Glutamatergic Supramammillary Nucleus Neurons Respond to Threatening Stressors and Promote Active Coping

  1. Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO
  2. Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago IL
  3. Department of Neuroscience, Washington University in St. Louis, St. Louis, MO
  4. Department of Psychiatry, Washington University in St. Louis, St. Louis, MO
  5. Medical College of Wisconsin, Milwaukee WI
  6. Department of Obstetrics and Gynecology, Washington University in St. Louis, St. Louis, MO
  7. Center for Neurobiology of Addiction, Pain, and Emotion University of Washington, Seattle, WA
  8. Department of Anesthesiology and Pain Medicine University of Washington, Seattle, WA
  9. Department of Pharmacology University of Washington, Seattle, WA
  10. Department of Bioengineering University of Washington, Seattle, WA

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Laura Bradfield
    University of Technology Sydney, Sydney, Australia
  • Senior Editor
    Kate Wassum
    University of California, Los Angeles, Los Angeles, United States of America

Reviewer #1 (Public Review):

Summary:

This important manuscript investigates a subpopulation of glutamatergic neurons in the suprammamillary nucleus that projects to the pre-optic hypothalamus area (SuM-VGLUT2+::POA). First, they define the neural circuitry of these neurons, which make contact with many stress/threat-associated brain regions. Then they employ fibre photometry to measure the activity of these neurons during various threatening tasks and find the responses correlate well with threat stimuli. Finally, they stimulate these neurons and find multiple lines of evidence that mice find this aversive and will act to avoid receiving this stimulation. In sum, they provide compelling evidence that this neuronal population represents a new node in stress response circuitry that allows the animal to produce flexible behaviours in response to stress, which will be of interest to neuroscientists across several sub-fields.

Strengths:

Overall I found a lot to like about this manuscript and very little to dislike. It is very novel and interesting, and the evidence given to support the conclusions is compelling.

Specific strengths:

• The topic is highly novel.
• The manuscript follows a logical structure and neatly moves through the central story. I found myself quite convinced of the evidence given for the conclusions that were made and many potential alternate interpretations are well-controlled for.
• The manuscript employs an array of different tasks to provide converging evidence for their conclusions.
• The authors provide excellent evidence of the specificity of the function of this neuronal population, both from anatomical studies and from behavioural studies (e.g. demonstrating that activity of gabaergic neurons in the same region does not correlate with behaviours in the same way).
• The study is well-powered (sample sizes are good) and the effects are convincing.

Weaknesses:

• Despite the manuscript being generally well-written and easy to follow, there are several grammatical errors throughout that need to be addressed.
• Only p values are given in the text to support statistical differences. This is not sufficient. F and/or t values should be given as well. Moreover, the fibre photometry data does not appear to have any statistical analyses reported - only confidence intervals represented in the figures without any mention of whether the null hypothesis that the elevations in activity observed are different from the baseline. This is particularly important where there is ambiguity, such as in Figure 3K, where the spontaneous activity of the animal appears to correlate with a spike in activity but the text mentions that there is no such difference. Without statistics, this is difficult to judge.
• The use of photostimulation only is unfortunate, it would have been really nice to see some inactivation of these neurons as well. This is because of the well-documented issues with being able to determine whether photostimulation is occurring in a physiological manner, and therefore makes certain data difficult to interpret. For instance, with regards to the 'active coping' behaviours - is this really the correct characterisation of what's going on? I wonder if the mice simply had developed immobile responding as a coping strategy but when they experience stimulation of these neurons that they find aversive, immobility is not sufficient to deal with the summative effects of the aversion from the swimming task as well as from the neuronal activation? An inactivation study would be more convincing.
• Nose poke is only nominally instrumental as it cannot be shown to have a unique relationship with the outcome that is independent of the stimuli-outcome relationships (in the same way that a lever press can, for example). Moreover, there is nothing here to show that the behaviours are goal-directed.

Reviewer #2 (Public Review):

The manuscript by Escobedo et al. is an interesting investigation addressing the involvement of a lesser-studied brain region/neuron population (SUM glutamate neurons that project to the POA and other places) in active coping and locomotor behavior. The authors present data that this small population of glutamate neurons is an important circuit hub recruited for active coping but not overall locomotion by employing several behavioral tests. The manuscript is straightforward and potentially interesting, but the strength of the evidence and the significance of the paper as a whole is limited due to some lack of rigor with regards to 1) validation and quantification of anatomical tracing data that serve as a basis for the behavioral testing, 2) the use of statistics, 3) sex as a biological variable, 4) genotype differences between experimental and control groups in behavioral tests, and other concerns laid out below.

  1. These are very difficult, small brain regions to hit, and it is commendable to take on the circuit under investigation here. However, there is no evidence throughout the manuscript that the authors are reliably hitting the targets and the spread is comparable across experiments, groups, etc., decreasing the significance of the current findings. There are no hit/virus spread maps presented for any data, and the representative images are cropped to avoid showing the brain regions lateral and dorsal to the target regions. In images where you can see the adjacent regions, there appears expression of cell bodies (such as Supp 6B), suggesting a lack of SuM specificity to the injections.

  2. In addition, the whole brain tracing is very valuable, but there is very little quantification of the tracing. As the tracing is the first several figures and supp figure and the basis for the interpretation of the behavior results, it is important to understand things including how robust the POA projection is compared to the collateral regions, etc. Just a rep image for each of the first two figures is insufficient, especially given the above issue raised. the combination of validation of the restricted expression of viruses, rep images, and quantified tracing would add rigor that made the behavioral effects have more significance.

For example, in Fig 2, how can one be sure that the nature of the difference between the nonspecific anterograde glutamate neuron tracing and the Sum-POA glutamate neuron tracing is real when there is no quantification or validation of the hits and expression, nor any quantification showing the effects replicate across mice? It could be due to many factors, such as the spread up the tract of the injection in the nonspecific experiment resulting in the labeling of additional regions, etc.

Relatedly, in Supp 4, why isn't C normalized to DAPI, which they show, or area? Similar for G -what is the mcherry coverage/expression, and why isn't Fos normalized to that?

  1. The authors state that they use male and female mice, but they do not describe the n's for each experiment or address sex as a biological variable in the design here. As there are baseline sex differences in locomotion, stress responses, etc., these could easily factor into behavioral effects observed here.

  2. In a similar vein as the above, the authors appear to use mice of different genotypes (however the exact genotypes and breeding strategy are not described) for their circuit manipulation studies without first validating that baseline behavioral expression, habituation, stress responses are not different. Therefore, it is unclear how to interpret the behavioral effects of circuit manipulation. For example in 7H, what would the VGLUT2-Cre mouse with control virus look like over time? Time is a confound for these behaviors, as mice often habituate to the task, and this varies from genotype to genotype. In Fig 8H, it looks like there may be some baseline differences between genotypes- what is normal food consumption like in these mice compared to each other? Do Cre+ mice just locomote and/or eat less? This issue exists across the figures and is related to issues of statistics, potential genotype differences, and other experimental design issues as described, as well as the question about the possibility of a general locomotor difference (vs only stress-induced). In addition, the authors use a control virus for the control groups in VGAT-Cre manipulation studies but do not explain the reasoning for the difference in approach.

  3. The statistics used throughout are inappropriate. The authors use serial Mann-Whitney U tests without a description of data distributions within and across groups. Further, they do not use any overall F tests even though most of the data are presented with more than two bars on the same graph. Stats should be employed according to how the data are presented together on a graph. For example, stats for pre-stim, stim, and post-stim behavior X between Cre+ and Cre- groups should employ something like a two-way repeated measures ANOVA, with post-hoc comparisons following up on those effects and interactions. There are many instances in which one group changes over time or there could be overall main effects of genotype. Not only is serially using Mann-Whitney tests within the same panel misleading and statistically inaccurate, but it cherry-picks the comparisons to be made to avoid more complex results. It is difficult to comprehend the effects of the manipulations presented without more careful consideration of the appropriate options for statistical analysis.

Conceptual:

  1. What does the signal look like at the terminals in the POA? Any suggestion from the data that the projection to the POA is important?

  2. Is this distinguishing active coping behavior without a locomotor phenotype? For example, Fig. 5I and other figure panels show a distance effect of stimulation (but see issues raised about the genotype of comparison groups). In addition, locomotor behavior is not included for many behaviors, so it is hard to completely buy the interpretation presented.

  3. What is the role of GABA neurons in the SuM and how does this relate to their function and interaction with glutamate neurons? In Supp 8, GABA neuron activation also modulates locomotion and in Fig 7 there is an effect on immobility, so this seems pretty important for the overall interpretation and should probably be mentioned in the abstract.

Questions about figure presentation:

  1. In Fig 3, why are heat maps shown as a single animal for the first couple and a group average for the others? Why is the temporal resolution for J and K different even though the time scale shown is the same? What is the evidence that these signal changes are not due to movement per se?

  2. In Fig 4, the authors carefully code various behaviors in mice. While they pick a few and show them as bars, they do not show the distribution of behaviors in Cre- vs Cre+ mice before manipulation (to show they have similar behaviors) or how these behaviors shift categories in each group with stimulation. Which behaviors in each group are shifting to others across the stim and post-stim periods compared to pre-stim?
    Of note, issues of statistics, genotype, and SABV are important here. For example, the hint that treading/digging may have a slightly different pre-stim basal expression, it seems important to first evaluate strain and sex differences before interpreting these data.

  3. Why do the authors use 10 Hz stimulation primarily? is this a physiologically relevant stim frequency? They show that they get effects with 1 Hz, which can be quite different in terms of plasticity compared to 10 Hz.

  4. In Fig 5A-F, it is unclear whether locomotion differences are playing a role. Entrances (which are low for both groups) are shown but distance traveled or velocity are not.

In B, there is no color in the lower left panel. where are these mice spending their time? How is the entirety of the upper left panel brighter than the lower left? If the heat map is based on time distribution during the session, there should be more color in between blue and red in the lower left when you start to lose the red hot spots in the upper left, for example. That is, the mice have to be somewhere in apparatus. If the heat map is based on distance, it would seem the Cre- mice move less during the stim.

  1. By starting with 1 hz, are the experimenters inducing LTD in the circuit? what would happen if you stop stimming after the first epoch? Would the behavioral effect continue? What does the heat map for the 1 hz stim look like?

Relatedly, it is a lot of consistent stimulation over time and you likely would get glutamate depletion without a break in the stim for that long.

  1. In Fig 6, the authors show that the Cre- mice just don't do the task, so it is unclear what the utility of the rest of the figure is (such as the PR part). Relatedly, the pause is dependent on the activation, so isn't C just the same as D? In G and H, why is a subset of Cre+ mice shown? Why not all mice, including Cre- mice?

  2. In Fig 7, what does the GCaMP signal look like if aligned to the onset of immobility? It looks like since the hindpaw swimming is short and seems to precede immobility, and the increase in the signal is ramping up at the onset of hindpaw swimming, it may be that the calcium signal is aligned with the onset of immobility. What does it look like for swimming onset? In I, what is the temporal resolution for the decrease in immobility? Does it start prior to the termination of the stim, or does it require some elapsed time after the termination, etc?

Reviewer #3 (Public Review):

Summary:

Coping with stress by the animal in danger is essential for survival. The current study identified a novel population of neurons in the murine supramammillary nucleus (SuM) projecting to the POA as well as diverse brain regions relevant to the decision-making by combinatory labeling of the neurons with adeno-associated viruses (AAVs). Such a unique population of glutamatergic neurons was activated under a variety of acute stress, while the optogentic stimulation of them induced behaviors relevant to the active coping of the stress.

Strengths:

Discovery of the neural circuit converting the passive to the active stress coping strategy of the behavior in this study will provide deep insight into understanding how the animal survives with flexibility and must be informative for the neuroscience community.

Weaknesses:

Despite a large advance in understanding the role of this circuit in behavior in the study, I primarily have concerns about the interaction between SuM and other neural pathways.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation