Transformation of value signaling in a striatopallidal circuit

  1. University of California San Diego, Department of Neurobiology, School of Biological Sciences, San Diego, California

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Naoshige Uchida
    Harvard University, Cambridge, United States of America
  • Senior Editor
    Michael Frank
    Brown University, Providence, United States of America

Reviewer #1 (Public Review):

In this manuscript, Lee et al. compared encoding of odor identity and value by calcium signaling from neurons in the ventral pallidum (VP) in comparison to D1 and D2 neurons in the olfactory tubercle (OT).

Strengths: They utilize a strong comparative approach, which allows the comparison of signals in two directly connected regions. First, they demonstrate that both D1 and D2 OT neurons project strongly to the VP, but not the VTA or other examined regions, in contrast to accumbal D1 neurons which project strongly to the VTA as well as the VP. They examine single unit calcium activity in a robust olfactory cue conditioning paradigm that allows them to differentiate encoding of olfactory identity versus value, by incorporating two different sucrose, neutral and air puff cues with different chemical characteristics. They then use multiple analytical approaches to demonstrate strong, low-dimensional encoding of cue value in the VP, and more robust, high-dimensional encoding of odor identity by both D1 and D2 OT neurons, though D1 OT neurons are still somewhat modulated by reward contingency/value. Finally, they utilize a modified conditioning paradigm that dissociates reward probability and lick vigor to demonstrate that VP encoding of cue value is not dependent on encoding of lick vigor during sucrose cues, and that separable populations of VP neurons encode cue value/sucrose probability and lick vigor.

Weaknesses: The conclusions of the data are mostly well supported by the analyses, but the statistical analysis is somewhat limited and needs to be clarified and extended.

  1. The manuscript includes limited direct statistical comparison of the neural populations, and many of the comparisons between the subregions are descriptive, including descriptions of the percentage of neurons having specific response types, or differences in effect sizes or differing "levels" of significance. An additional direct comparison of data from each subpopulation would help to confirm whether the differences reported are statistically meaningful.

  2. When hypothesis tests are conducted between the neural populations, it is not clear whether the authors have accounted for the random effect of the subject, or whether individual units were treated as fully independent. For instance, pairwise differences are reported in Figures 4I, 5G/I/L, and others, but the statistical methods are unclear. Assessment of the statistics is further limited by the lack of reporting of degrees of freedom.

Reviewer #2 (Public Review):

Summary:
This work is interesting since the authors provide an in vivo analysis into how odor-associations may change as represented at the level of olfactory tubercle (presynaptic) and next at the level of the ventral pallidum (postsynaptic). First the authors start-off with a seemingly careful characterization of the anterograde and retrograde connectivity of dopamine 1 receptor (D1) and dopamine 2 receptor (D2) expressing medium spiny neurons in the olfactory tubercle and neurons in the ventral pallidum. From this work they claim that regardless of D1 or D2 expression, tubercle neurons mainly project to the lateral portion of the ventral pallidum. Next, to compare how odor-associated neuronal activity in the ventral pallidum and the olfactory tubercle (D1 vs D2 MSNs) transforms across association learning, the authors performed 2-photon calcium imaging while mice engaged in a lick / no-lick task wherein two odors are associated with reward, two odors are associated with no outcome, and two odors are associated with an air puff.

This manuscript builds off of prior work by several groups indicating that the olfactory tubercle neurons form flexible learned associations to odors by looking at outputs into the pallidum (but without looking specifically at palladial neurons that truly get input from tubercle I should highlight) and with that, this work is novel. We appreciated the use of a straight-forward odor-outcome behavioral paradigm and the careful computational methods and analyses utilized to disentangle the contributions of single neurons vs population level responses to behavior. With one exception from the Murthy lab, 2P imaging in the tubercle is a new frontier and that is appreciated - as is the 2P imaging in the pallidum which was well-supported by the histology. The anatomical work is also well presented.

Overall the approach and methods are superb. The issues come when considering how the authors present the story and what conclusions are made from these data. Several key points before going into specifics about each are: 1) The authors can not conclude that their results are contradictory to prior results, 2) The authors over-interpret the results and do not discuss several key methodological issues. We were concerned with the ability to make strong claims regarding the circuitry presented, especially given how much the presented claims contradict prior work. There were also issues with the interpretability of neuronal encoding of value vs valence based on the present behavior (in which a distinction between the air puff and neutral trial types was not clear) and the imaging methodology (in which the neuronal populations analyzed were not clearly defined). In addition to toning down and rectifying some of the language and interpretations, we suggest including a study limitations section where these methodological and interpretation issues are discussed. Over-interpreting and playing up the significance of this work is unnecessary. Readers should be given a sufficiently detailed and nuanced presentation of these thought-provoking results, and from there allowed to interpret the results as they want.

Strengths:
State-of-the-art approaches (as detailed above)

Possible conceptual innovation in terms of looking into output from the olfactory tubercle which has yet to be investigated in this avenue.

Weaknesses:
On the first point regarding the authors repeated and unsupported claims that their results are contradictory. There are papers by numerous groups, in respected journals including this one, all together which used 5 different methods (cfos, photometry, 2P, units, fMRI), in animals ranging from humans to mice, which support that tubercle neurons reflect the emotional association of an odor, whether spontaneous or learned. With that, it is on the authors to not claim that their results contradict as if the other papers are suspect, but instead, from our standpoint it is on the authors to explain how and why their results differ from these other papers versus just simply saying they found something different [which at present is framed in a way that is 'correct' due to primacy if nothing else].

Second, onto the points of interpretation of results, there are several specific areas where this should be rectified. As is, the authors overinterpret their results and draw too far-reaching conclusions. This needs to be corrected.

In particular, the claims that D1 and D2 neurons of the olfactory tubercle nearly exclusively send projections to the ventral pallidum must be interpreted with caution given that the authors injected an anterograde AAV into the anteromedial olfactory tubercle, and did not examine the projections from either the posterior or lateral portions of the olfactory tubercle. This is especially significant since the retrograde tracing performed from the ventral pallidum indicates that the lateral olfactory tubercle, not the medial olfactory tubercle, primarily projects to the ventral pallidum (Fig 1D-F), however this may be due to leakage into the nucleus accumbens, as seen in the supplementary figure, S1G. The same caution must be advised when interpreting the retrograde tracing performed in Fig 1G-I, since the neuronal tracer used and the laterality and rostral-caudal injection site within the VTA could result in different projection patterns and under- or over-labelling. Additionally, the metric used, %Fiber Density (Figure 1C), as in the percentage of 16-bit pixels within the region of interest with an intensity greater than 200, is semi-quantitative, and is more applicable for examining axonal fibers that pass through a region rather than the synaptic terminals (like with a synaptophysin fusion protein-based tracing paradigm) found within a region (puncta). The statements made in contrast to prior studies should therefore be softened, and these concerns should be addressed in the introduction, discussion, and the limitations section if added.

The other major concern is whether the behavioral data generated is indicative of the full spectrum of valence. The authors appropriately state that the mice "perceive" the air puff, yet based on their data the mice did not clearly experience the puff-associated odor as emotionally aversive (viz., negative valence). The way the authors describe these results, it seems they agree with this. With that, the authors can't say the puff is aversive without data to show such - that is an assumption which, while seemingly intuitive, is not supported by the data unfortunately. To elaborate more since this is important to the messaging of the paper: The authors utilized a simple behavioral design, wherein two molecular classes of odors were included in either a sucrose rewarded, neutral no outcome, or air puff punished trial type. The odor-outcome pairs were switched after three days, allowing the authors to compare neuronal responses on the basis of odor identity and the later associated outcome. While the mice showed clear learning of the rewarded trial types by an increase in anticipatory licking during the odor, they did not show any significant changes in behavior that indicated learning of the air puff trial type (change in running velocity or % maximal eye size), especially in contrast to the neutral trial type. This brings up the concern that either the odor-air puff aversive associations (to odors) were not learned, or that the neutral trial types, in which a reward was omitted, were just as aversive as the air puff to the rear, despite the lack of startle response - perhaps due to stimulus generalization between neutral and air puff odor. The possibility of lack of learning is addressed in the paragraph starting at line 578, but does not account for the possibility that the lack of reward is also sufficiently punishing. The authors also address the possibility that laterality in the VP contributed to the lack of neural responsivity observed, but should also include a statement regarding laterality in the olfactory tubercle, as described in https://doi.org/10.7554/eLife.25423 and https://doi.org/10.1523/JNEUROSCI.0073-15.2015, since the effects of modulating the lateral portion of the olfactory tubercle are not yet reported. Lastly, use of the term "reward processing" should be avoided/omitted since the authors did not specifically study the processing of reinforcers.

Also, I would appreciate justification of the term "value". How specifically does the assay used assess value versus a more simplistic learned association which influences perceived hedonics or valence of the odors.

More information is needed regarding how neurons are identified day-to-day, both in textual additions to the Methods and also in terms of elaborating more in the results and/or figure legends about what neurons are included:
a) The ROI maps for identifying/indicating cells in the FOVs are nice to see and at the same time raise some concerns about how cells are identified and/or borders for those specific ROIs drawn. For instance, Figure 4, A & D, ROI #13 (cell #13) between those two panels is VERY different in shape/size. Also see ROIs 15 and 4. Why was an ROI map not made on day 1 and then that same map applied and registered to frames from consecutive imaging days in that same mouse? As it is new ROIs are drawn, smaller for some "cells" and larger for others. And at least in ROI #13 above, one ROI is about twice as large as the other. This inconsistency in the work flow and definition of the ROIs is needing to be addressed in Methods. Also, the authors should address if and how this could possibly impact their results.
b) Also, more details are needed in results and/or figure legends regarding the changes in cell numbers over days that are directly compared in the results. Some days there are 10% or more or less cells. Why? It is not the same population being compared in this case and so some Discussion of this is needed.

Reviewer #3 (Public Review):

Summary:
This manuscript describes a study of the olfactory tubercle in the context of reward representation in the brain. The authors do so by studying the responses of OT neurons to odors with various reward contingencies and compare systematically to the ventral pallidum. Through careful tracing, they present convincing anatomical evidence that the projection from the olfactory tubercle is restricted to the lateral portion of the ventral pallidum.

Using a clever behavioral paradigm, the authors then investigate how D1 receptor- vs. D2 receptor-expressing neurons of the OT respond to odors as mice learn different contingencies. The authors find that, while the D1-expressing OT neurons are modulated marginally more by the rewarded odor than the D2-expressing OT neurons as mice learn the contingencies, this modulation is significantly less than is observed for the ventral pallidum. In addition, neither of the OT neuron classes shows significant modulation by the reward itself. In contrast, the OT neurons contained information that could distinguish odor identities. These observations have led the authors to conclude that the primary feature represented in the OT is not reward.

Strengths:
The highly localized projection pattern from olfactory tubercle to ventral pallidum is a valuable finding and suggests that studying this connection may give unique insights into the transformation of odor by reward association.

Comparison of olfactory tubercle vs. ventral pallidum is a good strategy to further clarify the olfactory tubercle's position in value representation in the brain.

Weaknesses:

The authors' interpretation of the physiologic results - that a novel framework is needed to interpret the OT's role - requires more careful treatment.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation