Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.
Read more about eLife’s peer review process.Editors
- Reviewing EditorSean LawlerBrown University Cancer Center, Providence, United States of America
- Senior EditorWafik El-DeiryBrown University, Providence, United States of America
Reviewer #1 (Public Review):
Summary of Author's Objectives:
The authors aimed to explore JMJD6's role in MYC-driven neuroblastoma, particularly in the interplay between pre-mRNA splicing and cancer metabolism, and to investigate the potential for targeting this pathway.
Strengths:
1. The study employs a diverse range of experimental techniques, including molecular biology assays, next-generation sequencing, interactome profiling, and metabolic analysis. Moreover, the authors specifically focused on gained chromosome 17q in neuroblastoma, in combination with analyzing cancer dependency genes screened with Crispr/Cas9 library, analyzing the association of gene expression with prognosis of neuroblastoma patients with large clinical cohort. This comprehensive approach strengthens the credibility of the findings. The identification of the link between JMJD6-mediated pre-mRNA splicing and metabolic reprogramming in MYC-driven cancer cells is innovative.
2. The authors effectively integrate data from multiple sources, such as gene expression analysis, RNA splicing analysis, JMJD6 interactome assay, and metabolic profiling. This holistic approach provides a more complete understanding of JMJD6's role.
3. The identification of JMJD6 as a potential therapeutic target and its correlation with the response to indisulam have significant clinical implications, addressing an unmet need in cancer treatment.
Weaknesses:
1. The manuscript contains complex technical details and terminology that may pose challenges for readers without a deep background in molecular biology and cancer research. Providing simplified explanations or additional context would enhance accessibility.
2. It would be beneficial to explore whether treatment with JMJD6 inhibitors, both in vitro and in vivo, can effectively target the enhanced pre-mRNA splicing of metabolic genes in MYC-driven cancer cells.
Appraisal of Achievement and Conclusion Support:
The authors have effectively met their objectives by offering valuable insights into JMJD6's role in MYC-driven neuroblastoma. The results robustly underpin their conclusions about JMJD6's contribution to metabolic reprogramming through alternative splicing and its connection to the therapeutic response to indisulam.
Likely Impact on the Field and Utility of Methods/Data:
The study's findings have the potential to significantly impact the field of cancer research by identifying JMJD6 as a promising therapeutic target for MYC-driven cancers. The methods and data presented in the manuscript offer valuable resources to the research community for further investigations into cancer metabolism and splicing regulation.
Additional Context for Interpretation:
Understanding the complex interplay between cancer metabolism and splicing regulation is crucial for developing effective cancer treatments. This study sheds light on a previously poorly understood aspect of MYC-driven cancers and opens new avenues for targeted therapies. However, the transition from preclinical findings to clinical applications may face challenges, which should be considered in future research and clinical trials.
Reviewer #2 (Public Review):
Summary:
Jablonowski and colleagues studied key characteristics of MYC-driven cancers: dysregulated pre-mRNA splicing and altered metabolism. This is an important field of study as it remains largely unclear as to how these processes are coordinated in response to malignant transformation and how they are exploitable for future treatments. In the present study, the authors attempt to show that Jumonji Domain Containing 6, Arginine Demethylase And Lysine Hydroxylase (JMJD6) plays a central role in connecting pre-mRNA splicing and metabolism in MYC-driven neuroblastoma. JMJD6 collaborates with the MYC protein in driving cellular transformation by physically interacting with RNA-binding proteins involved in pre-mRNA splicing and protein regulation. In cell line experiments, JMJD6 affected the alternative splicing of two forms of glutaminase (GLS), an essential enzyme in the glutaminolysis process within the central carbon metabolism of neuroblastoma cells. Additionally, the study provides in vitro (and in silico) evidence for JMJD6 being associated with the anti-proliferation effects of a compound called indisulam, which degrades the splicing factor RBM39, known to interact with JMJD6.
Overall, the findings presented by Jabolonowski et al. begin to illuminate a cancer-promoting metabolic, and potentially, a protein synthesis suppression program that may be linked to alternative pre-mRNA splicing through the action of JMJD6 - downstream of MYC. This discovery can provide further evidence for considering JMJD6 as a potential therapeutic target for the treatment of MYC-driven cancers.
Strengths:
Alternative Splicing Induced by JMJD6 Knockdown: the study presents evidence for the role of JMJD6 in alternative splicing in neuroblastoma cells. Specifically, the RNA immunoprecipitation experiments demonstrated a significant shift from the GAC to the KGA GLS isoform upon JMJD6 knockdown. Moreover, a significant correlation between JMJD6 levels and GAC/KGA isoform expression was identified in two distinct neuroblastoma cohorts. This suggests a causative link between JMJD6 activity and isoform prevalence.
Physical Interaction of JMJD6 in Neuroblastoma Cells: The paper provides preliminary insight into the physical interactome of JMJD6 in neuroblastoma cells. This offers a potential mechanistic avenue for the observed effects on metabolism and protein synthesis and could be exploited for a deeper investigation into the exact nature, and implications of neuroblastoma-specific JMJD6 protein-protein interactions.
Weaknesses:
There are several areas that would benefit from improvements with regard to the current data supporting the claims of the paper (i.e., the conclusion presented in Figure 8).
Neuroblastoma Modelling Strategy: The study heavily relies on cell lines without incorporating patient-derived cells/biomaterials. Using databases to fill gaps in the experimental design can only fortify the observations to a certain extent. A critical oversight is the absence of non-cancerous control cells in many figures, and the rationale for selecting specific cell lines for assays/approaches remains somewhat unclear. A foundational control for such experiments should involve the non-transformed neural crest cell line, which the authors have readily available. Are the observed splicing and metabolic effects of JMJD6 specific to neuroblastoma? Is there a neuroblastoma-specific JMJD6 interactome? Is MYC function essential?
In Vivo Modelling: The inclusion of a genetic mouse model combined with an inducible JMJD6 knockdown, would enhance the study by allowing examination of JMJD6's role during both tumor initiation and growth in vivo. For instance, the TH-MYCN mice overexpressing MYCN in neural crest cells, could be a promising choice.
Dependence on Colony Formation Assay: The study leans on 2D and semi-quantitative colony formation assays to assess malignant growth. To validate the link between the mechanistic insights discussed (e.g., reduced protein synthesis) and JMJD6-mediated malignant growth as a potential therapeutic target, evidence from in vivo or representative 3D models would be crucial.
Data Presentation and Rigor: The presented data is predominantly qualitative and necessitates quantification. For instance, Western blots should be quantified. The RNAseq, metabolism, and pull-down data should be transparently and numerically presented. The figure legends seem elusive and their lack of transparency (often with regards to biological repeats, error bars, cell line used etc.) is concerning. Adequate citation and identification of all data sources, including online resources, are imperative. The manuscript would also benefit from a more rigorous depiction and quantification of RNA interference of both stable and transient knockdowns with quantitative validation at mRNA and protein levels.
Novelty Concerns: The emphasis on JMJD6 as a novel neuroblastoma target is contingent on the new mechanistic revelations about the JMJD6-centered link between splicing, metabolism, and protein synthesis. Given that JMJD6 has been previously linked to neuroblastoma biology, the rationale (particularly in Figure 1) for concentrating on JMJD6 may stem more from bias rather than data-driven reasoning.
Depth of Mechanistic Investigation: Current evidence lacks depth in key areas such as JMJD6-RNA binding. A more thorough approach would involve pinpointing specific JMJD6 binding sites on endogenous RNAs using techniques such as cross-linking and immunoprecipitation, paired with complementary proximity-based methodologies. Regarding the presented metabolism data, diving deeper into metabolic flux via isotope labeling experiments could shed light on dynamic processes like TCA and glutaminolysis. As it stands, the 'pathway cartoon' in Figure 6d appears overly qualitative.