Peer review process
Revised: This Reviewed Preprint has been revised by the authors in response to the previous round of peer review; the eLife assessment and the public reviews have been updated where necessary by the editors and peer reviewers.
Read more about eLife’s peer review process.Editors
- Reviewing EditorMing MengSouth China Normal University, Guangzhou, China
- Senior EditorTirin MooreStanford University, Howard Hughes Medical Institute, Stanford, United States of America
Reviewer #1 (Public Review):
Summary
A new method, tCFS, is introduced to offer richer and more efficient measurement of interocular suppression. It generates a new index, the suppression depth, based on the contrast difference between the up-ramped contrast for the target to breakthrough suppression and the down-ramped contrast for the target to disappear into suppression. A uniform suppression depth regardless of image types (e.g., faces, gratings and scrambles) was discovered in the paper, favoring an early-stage mechanism involving CFS. Discussions about claims of unconscious processing and the related mechanisms.
Strength
The tCFS method adds to the existing bCFS paradigms by providing the (re-)suppression threshold and thereafter the depression depth. Benefiting from adaptive procedures with continuous trials, the tCFS is able to give fast and efficient measurements. It also provides a new opportunity to test theories and models about how information is processed outside visual awareness.
Weakness:
This paper reports the surprising finding of uniform suppression depth over a variety of stimuli. This is novel and interesting. But given the limited samples being tested, the claim of uniformity suppression depth needs to be further examined, with respect to different complexities and semantic meanings.
From an intuitive aspect, the results challenged previous views about "preferential processing" for certain categories, though it invites further research to explore what exactly could suppression depth tell us about unconscious visual processing.
Reviewer #2 (Public Review):
Summary
The paper concerns the phenomenon of continuous flash suppression (CFS), relevant to questions about the extent and nature of subconscious visual processing. Whereas standard CFS studies only measure the breakthrough threshold-the contrast at which an initially suppressed target stimulus with steadily increasing contrast becomes visible-this study also measures the re-suppression threshold, the contrast at which a visible target with decreasing contrast becomes suppressed. Thus, the authors could calculate suppression depth, the ratio between the breakthrough and re-suppression thresholds. To measure both thresholds, the study introduces the tracking-CFS method, a continuous-trial design that results in faster, better controlled, and lower-variance threshold estimates compared to the discrete trials standard in the literature. The study finds that suppression depths are similar for different image categories, providing an interesting contrast to previous results that breakthrough thresholds differ for different image categories. The new finding calls for a reassessment of interpretations based solely on the breakthrough threshold that subconscious visual processing is category-specific.
Strengths
(1) The tCFS method quickly estimates breakthrough and re-suppression thresholds using continuous trials, which also better control for slowly varying factors such as adaptation and attention. Indeed, tCFS produces estimates with lower across-subject variance than the standard discrete-trial method (Fig. 2). The tCFS method is straightforward to adopt in future research on CFS and binocular rivalry.
(2) The CFS literature has lacked re-suppression threshold measurements. By measuring both breakthrough and re-suppression thresholds, this work calculated suppression depth (i.e., the difference between the two thresholds), which warrants different interpretations from the breakthrough threshold alone.
(3) The work found that different image categories show similar suppression depths, suggesting some aspects of CFS are not category-specific. This result enriches previous findings that breakthrough thresholds vary with image categories. Re-suppression thresholds vary symmetrically, such that their differences are constant.
Weakness
I do not follow the authors' reasoning as to why the suppression depth is a better (or fuller, superior, more informative) indication of subconscious visual processing than the breakthrough threshold alone. To my previous round of comments, the authors replied that 'breakthrough provides only half of the needed information.' I do not understand this. One cannot infer the suppression depth from the breakthrough threshold alone, but *one cannot obtain the breakthrough threshold from the suppression depth alone*, either. The two measures are complementary. (To be sure, given *both* the suppression depth and the re-suppression threshold, one can recover the breakthrough threshold. The discussion concerns the suppression depth *alone* and the breakthrough threshold *alone*.) I am fully open to being convinced that there is a good reason why the suppression depth may be more informative than the breakthrough threshold about a specific topic, e.g., inter-ocular suppression or subconscious visual processing. I only request that the authors make such an argument explicit. For example, in the significance statement, the authors write, 'all images show equal suppression when both thresholds are measured. We *thus* find no evidence of differential unconscious processing and *conclude* reliance on breakthrough thresholds is misleading' (emphasis added). Just what supports the 'thus' and the 'conclude'? Similarly, at the end of the introduction, the authors write, '[...] suppression depth was constant for faces, objects, gratings and visual noise. *In other words*, we find no evidence to support differential unconscious processing among these particular, diverse categories of suppressed images' (emphasis added). I am not sure the statements in the two sentences are equivalent.
The authors' reply included a discussion of neural CRFs, which may explain why the bCFS thresholds differ across image categories. A further step seems necessary to explain why CRFs do not qualify as a form of subconscious processing.
Reviewer #3 (Public Review):
Summary:
In the 'bCFS' paradigm, a monocular target gradually increases in contrast until it breaks interocular suppression by a rich monocular suppressor in the other eye. The present authors extend the bCFS paradigm by allowing the target to reduce back down in contrast until it becomes suppressed again. The main variable of interest is the contrast difference between breaking suppression and (re) entering suppression. The authors find this difference to be constant across a range of target types, even ones that differ substantially in the contrast at which they break interocular suppression (the variable conventionally measured in bCFS). They also measure how the difference changes as a function of other manipulations. Interpretation is in terms of the processing of unconscious visual content, as well as in terms of the mechanism of interocular suppression.
Strengths:
Interpretation of bCFS findings is mired in controversy, and this is an ingenuous effort to move beyond the paradigm's exclusive focus on breaking suppression. The notion of using the contrast difference between breaking and entering suppression as an index of suppression depth is interesting. The finding that this difference is similar for a range of target types that do differ in the contrast at which they break suppression, suggests a common mechanism of suppression across those target types.