The magnitude and time course of pre-saccadic foveal prediction depend on the conspicuity of the saccade target

  1. Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
  2. Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
  3. Exzellenzcluster Science of Intelligence, Technische Universität Berlin, Berlin, Germany
  4. Bernstein Center for Computational Neuroscience Berlin, Germany

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a response from the authors (if available).

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Krystel Huxlin
    University of Rochester, Rochester, United States of America
  • Senior Editor
    Joshua Gold
    University of Pennsylvania, Philadelphia, United States of America

Reviewer #1 Public Review:

Summary:
This study examines to what extent this phenomenon varies based on the visibility of the saccade target. Visibility is defined as the contrast level of the target with respect to the noise background, and it is related to the signal-to-noise ratio of the target. A more visible target facilitates the oculomotor behavior planning and execution, however, as speculated by the authors, it can also benefit foveal prediction even if the foveal stimulus visibility is maintained constant. Remarkably, the authors show that presenting a highly visible saccade target is beneficial for foveal vision as the detection of stimuli with an orientation similar to that of the saccade target is improved, the lower the saccade target visibility, the less prominent the effect.

Strengths:
The results are convincing and the research methodology is technically sound.

Weaknesses:
Discussion on how this phenomenon may unfold in natural viewing conditions when the foveal and saccade target stimuli are complex and are constituted by different visual properties is lacking. Some speculations regarding feedforward vs feedback neural processing involved in the phenomenon and the speed of the feedforward signal in relation to the visibility of the target, are not well justified and not clearly supported by the data.

Reviewer #2 Public Review:

Summary:
In this manuscript, the authors ran a dual task. Subjects monitored a peripheral location for a target onset (to generate a saccade to), and they also monitored a foveal location for a foveal probe. The foveal probe could be congruent or incongruent with the orientation of the peripheral target. In this study, the authors manipulated the conspicuity of the peripheral target, and they saw changes in performance in the foveal task. However, the changes were somewhat counterintuitive.

Strengths:
The authors use solid analysis methods and careful experimental design.

Weaknesses:
I have some issues with the interpretation of the results, as explained below. In general, I feel that a lot of effects are being explained by attention and target-probe onset asynchrony etc, but this seems to be against the idea put forth by the authors of "foveal prediction for visual continuity across saccades". Why would foveal prediction be so dependent on such other processes? This needs to be better clarified and justified.

Specifics:
The explanation of decreased hit rates with increased peripheral target opacity is not convincing. The authors suggest that higher contrast stimuli in the periphery attract attention. But, then, why are the foveal results occurring earlier (as per the later descriptions in the manuscript)? And, more importantly, why would foveal prediction need to be weaker with stronger pre-saccadic attention to the periphery? What is the function of foveal prediction? What of the other interpretation that could be invoked in general for this type of task used by the authors: that the dual task is challenging and that subjects somehow misattribute what they saw in the peripheral task when planning the saccade. i.e. foveal hit rates are misperceptions of the peripheral target. When the peripheral target is easier to see, then the foveal hit rate drops.

The analyses of Fig. 3C appear to be overly convoluted. They also imply an acknowledgment by the authors that target-probe temporal difference matters. Doesn't this already negate the idea that the foveal effects are associated with the saccade generation process itself? If the effect is related to target onset, how is it interpreted as related to a foveal prediction that is associated with the saccade itself? Also, the oscillatory nature of the effect in Fig. 3C for 59% and 90% opacity is quite confusing and not addressed. The authors simply state that enhancement occurs earlier before the saccade for higher contrasts. But, this is not entirely true. The enhancement emerges then disappears and then emerges again leading up to the saccade. Why would foveal prediction do that?

The interpretation of Fig. 4 is also confusing. Doesn't the longer latency already account for the lapse in attention, such that visual continuity can proceed normally now that the saccade is actually eventually made? In all results, it seems that the effects are all related to the dual nature of the task and/or attention, rather than to the act of making the saccade itself. Why should visual continuity (when a saccade is actually made, whether with short or long latency) have different "fidelity"? And, isn't this disruptive to the whole idea of visual continuity in the first place?

Small question: is it just me or does the data in general seem to be too excessively smoothed?

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation