A robust method for measuring aminoacylation through tRNA-Seq

  1. Fred Hutchinson Cancer Center
  2. Molecular and cellular biology program, University of Washington

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Marina Rodnina
    Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
  • Senior Editor
    Detlef Weigel
    Max Planck Institute for Biology Tübingen, Tübingen, Germany

Reviewer #1 (Public Review):

Summary:
The manuscript of Davidsen and Sullivan describes an improved tRNA-seq protocol to determine aminoacyl-tRNA levels. The improvements include: (i) optimizing the Whitfeld or oxidation reaction to select aminoacyl-tRNAs from oxidation-sensitive non-acylated tRNAs; (ii) using a splint-assisted ligation to modify the tRNAs' ends for the following RT-PCR reaction; (iii) using an error-tolerating mapping algorithm to map the tRNA sequencing reads that contain mismatches at modified nucleotides.

Strengths:
The two steps, the oxidation, and the splint-assisted ligation are yield-diminishing steps, thus the protocol of Davidsen and Sullivan is an important improvement of the current protocols to enhance the quantification of aminocyl-tRNAs.

Weaknesses:
The oxidation and the selection of aminoacyl-tRNA is the first step in all protocols. Thereafter they differ on whether blunt ligation, hairpin (DM-tRNA-seq, YAMAT-seq, QuantM-seq, mim tRNA-seq, LOTTE tRNA-seq), or splint ligation is used and finally what detection method is applied (i-tRAP, tRNA microarrays). What is the correlation to those alternative approaches (e.g. i-tRAP (PMID 36283829), tRNA microarrays (PMID: 31263264) etc.)? What is the correlation with other approaches with which this improved protocol shares some steps (DM-tRNA-seq, mim-tRNA-seq)?

Reviewer #2 (Public Review):

Davidsen and Sullivan present an improved method for quantifying tRNA aminoacylation levels by deep sequencing. By combining recent advances in tRNA sequencing with lysine-based chemistry that is more gentle on RNA, splint oligo-based adapter ligation, and full alignment of tRNA reads, they generate an interesting new protocol. The lab protocol is complemented by a software tool that is openly available on Github. Many of the points highlighted in this protocol are not new but have been used in recent protocols such as Behrens et al. (2021) or McGlincy and Ingolia (2017). Nevertheless, a strength of this study is that the authors carefully test different conditions to optimize their protocol using a set of well-designed controls.

The conclusions of the manuscript appear to be well supported by the data presented. However, there are a few points that need to be clarified.

  1. One point that remains unsatisfactory is a better benchmarking against the state of the art. It is currently impossible to estimate how much the results of this new protocol differ from alternative methods and in particular from Behrens et al. (2021). Here it will be helpful to perform experiments with samples similar to those used in the mim-tRNAseq study and not with H1299 cells.

  2. While the protocol aims to implement an improved method for quantification of tRNA aminoacylation, it can also be used for tRNA quantification and analysis of tRNA modifications. It will increase the impact of this study if the authors benchmark the outcomes of their protocol with other tRNA sequencing protocols with samples similar to these papers, which will be important for certain research teams that are unlikely to implement two different tRNA sequencing methods. Are there any possible adaptations that would allow the analysis of tRNA fragments?

  3. Like Behrens et al. (2021), Davidsen and Sullivan use TGIRT-III RT for their analyses. The enzyme is not currently available in a form suitable for tRNA-seq. It would be very helpful to test different new RT enzymes that are commercially available. The example of Maxima RT - Figure 2 Supp 6 - shows significantly lower performance than the presented TGIRT-III RT data. In lines 296-298, the authors mention improvements to the protocol by using ornithine. Why are these improvements not included?

  4. A technical concern: The samples are purified multiple times using a specific RNA purification kit. Did the authors test different methods to purify the RNA and does this influence the result of the method?

  5. The study would benefit from an explicit step-by-step protocol, including the choice of adapters that are shown to work best in the protocol.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation