Author response:
The following is the authors’ response to the original reviews.
Reviewer #1 (Public Review):
Weakness 1. Enhancing Reproducibility and Robustness: To enhance the reproducibility and robustness of the findings, it would be valuable for the authors to provide specific numbers of animals used in each experiment. Explicitly stating the penetrance of the rod-like neurocranial shape in dact1/2-/- animals would provide a clearer understanding of the consistency of this phenotype.
In Fig. 3 and Fig. 4 animal numbers were added to the figure and figure legend (line 1111). In Fig. 5 animal numbers were added to the figure. We now state that dact1/2-/- animals exhibit the rod-like neurocranial shape that is completely penetrant (Line 260).
Weakness 2. Strengthening Single-Cell Data Interpretation: To further validate the single-cell data and strengthen the interpretation of the gene expression patterns, I recommend the following:
-Provide a more thorough explanation of the rationale for comparing dact1/2 double mutants with gpc4 mutants.
-Employ genotyping techniques after embryo collection to ensure the accuracy of animal selection based on phenotype and address the potential for contamination of wild-type "delayed" animals.
-Supplement the single-cell data with secondary validation using RNA in situ or immunohistochemistry techniques.
An explanation of our rationale was added to the results section (Lines 391403) and a summary schematic was added to Figure 6 (panel A).
Genotyping of the embryos was not possible but quality control analysis by considering the top 2000 most variable genes across the dataset showed good clustering by genotype, indicating the reproducibility of individuals in each group (See Supplemental Fig. 4).
The gene expression profiles obtained in our single-cell data analysis for gpc4, dact1, and dact2 correlate closely with our in situ hybridization analyses. Further, our data is consistent with published zebrafish single-cell data. We validated our finding of increased capn8 expression in dact1/2 mutants by in situ hybridization. Therefore we are confident in the robustness of our single-cell data.
Weakness 3. Directly Investigating Non-Cell-Autonomous Effects: To directly assess the proposed non-cell-autonomous role of dact1/2, I suggest conducting transplantation experiments to examine the ability of ectodermal/neural crest cells from dact1/2 double mutants to form wild-type-like neurocranium.
The reviewer’s suggestion is an excellent experiment and something to consider for future work. Cell transplant experiments between animals of specific genotypes are challenging and require large numbers. It is not possible to determine the genotype of the donor and recipient embryos at the early timepoint of 1,000 cell stage where the transplants would have to be done in the zebrafish. So that each transplant will have to be carried out blind to genotype from a dact1+/-; dact2+/- or dact1-/-; dact2+/- intercross and then both animals have to be genotyped at a subsequent time point, and the phenotype of the transplant recipient be analyzed. While possible, this is a monumental undertaking and beyond the scope of the current study.
Weakness 4. Further Elucidating Calpain 8's Role: To strengthen the evidence supporting the critical role of Calpain 8, I recommend conducting overexpression experiments using a sensitized background to enhance the statistical significance of the findings.
We thank the reviewer for their suggestion and have now performed capn8 overexpression experiments in embryos generated from dact1/2 double heterozygous breeding. We found a statistically significant effect of capn8 overexpression in the dact1+/-,dact2+/- fish (Lines 462-464 and Fig. 8C,D).
Minor Comments:
Comment: Creating the manuscript without numbered pages, lines, or figures makes orientation and referencing harder.
Revised
Comment: Authors are inconsistent in the use of font and adverbs, which requires extra effort from the reader. ("wntIIf2 vs wnt11f2 vs wnt11f2l"; "dact1/2-/- vs dact1/dact2 -/-"; "whole-mount vs wholemount vs whole mount").
Revised throughout.
Comment: Multiple sentences in the "Results" belong to the "Materials and Methods" or the "Discussion" section.
We have worked to ensure that sentences are within the appropriate sections of the manuscript.
Comment: Abstract:
"wnt11f2l" should be "wnt11f2"
Revised (Line 24).
Comment: Main text:
Page 5 - citation Waxman, Hocking et al. 2004 is used 3x without interruption any other citation.
Revised (Line 112).
Page 9 - "dsh" mutant is mentioned once in the whole manuscript - is this a mistake?
Revised, Rewritten (Line 196).
Page 10 - Fig 2B does not show ISH.
Revised (Line 229).
Page 11 - "kyn" mutant is mentioned here for the first time but defined on page 15.
Revised (Line 245). Now first described on page 4.
Page 14 - "cranial CNN" should be CNCC.
Revised. (Line 334)
Page 16 - dact1/dact2/gpc4: Fig. 5C is used but it should be Fig 5E.
Revised. (Line 381)
Page 18 - dact1/2-/- or dact1-/-, dact2-/-.
Revised. (Line 428)
Comment: Methods:
Page 24 - ZIRC () "dot" is missing. ChopChop ")" is missing. "located near the 5' end of the gene" - In the Supplementary Figure 1 looks like in the middle of the gene.
Revised. (Lines 600, 609, 611, respectively).
Page 25 - WISH -not used in the main text.
Revised. (Line 346).
Page 26 - 4% (v/v) formaldehyde; at 4C - 4{degree sign}C; 50% (v/v) ethanol; 3% (w/v) methylcellulose.
Revised. (Lines 659, 660, 662).
Page 27 - 0.1% (w/v) BSA.
Revised. (Line 668).
Comment: Discussion:
The overall discussion requires more references and additional hypotheses. On page 20, when mentioning 'as single mutants develop normally,' does this refer to the entire animals or solely the craniofacial domain? Are these mutants viable? If they are, it's crucial to discuss this phenomenon in relation to prior morpholino studies and genetic compensation.
Observing how the authors interpret previously documented changes in nodal and shh signaling would be beneficial. While Smad1 is discussed, what about other downstream genes? Is shh signaling altered in the dact1/2 double mutants?
We have revised the Discussion to include more references (Lines 473, 476, 483, 488, 491, 499, 501, 502, 510, 515, 529, 557, 558) and additional hypotheses (Lines 503-505, 511-519, 522-525). We have added more specific information regarding the single mutants (Lines 270-275, 480-493, Fig. S3). We have added discussion of other downstream genes, including smad1 (Lines 561-572) and shh (Lines 572-580).
Comment: Figures:
Appreciating differences between specimens when eyes were or were not removed is quite hard.
Yes this was an unfortunate oversight, however, the key phenotype is the EP shown in the dissections.
Fig 1. - wntIIf2 vs wnt11f2? C - Thisse 2001 - correct is Thisse et al. 2001.
Revised typo in Fig 1. (And Line 1083).
Fig 1E: These plots are hard to understand without previous and detailed knowledge. Authors should include at least some demarcations for the cephalic mesoderm, neural ectoderm, mesenchyme, and muscle. Missing color code.
We have moved this data to supplementary figure S1 and have added labels of the relevant cell types and have added the color code.
Comment:- Fig 2 - In the legend for C - "wildtype and dact2-/- mutant" and "dact1/2 mutant"; in the picture is dact1-/-, dact2-/-.
Revised (Line 1105).
Fig 2 - B - it is a mistake in 6th condition dact1: 2x +/+, heterozygote (+/-) is missing.
Revised Figure 2B.
Fig 4. - Typo in the legend: dact1/"t"2-/- .
Revised. (Line 1127).
Fig 8C - In my view, when the condition gfp mRNA says "0/197, " none of the animals show this phenotype. I assume the authors wanted to say that all the animals show this phenotype; therefore, "197/197" should be used.
We have removed this data from the figure as there were concerns by the reviewers regarding reproducibility.
Fig S1 - Missing legend for the 28 + 250, 380 + 387 peaks? RT-qPCR - is not mentioned in the Materials and Methods. In D - ratio of 25% (legend), but 35% (graph).
Revised.(Line 1203, Line 625, Line 1213, respectively).
Fig S2 - The word "identified" - 2x in one sentence.
Revised. (Line 1230).
Reviewer #2 (Public Review):
Weakness(1) While the qualitative data show altered morphologies in each mutant, quantifications of these phenotypes are lacking in several instances, making it difficult to gauge reproducibility and penetrance, as well as to assess the novel ANC forms described in certain mutants.
In Fig. 3 and Fig. 4 animal numbers were added to the figure legend. In Fig. 5 animal numbers were added to the figure to demonstrate reproducibility. We now state that dact1/2-/- animals exhibit the rod-like neurocranial shape that is completely penetrant (Line 260). As the altered morphologies that we report are qualitatively significant from wildtype we did not find it necessary to make quantitative measurements. For experiments in which it was necessary to in-cross triple heterozygotes (Fig 3, Fig. 5), we dissected and visually analyzed the ANC of at least 3 compound mutant individuals. At least one individual was dissected for the previously published or described genotypes/phenotypes (i.e. wt, wntllf2-/-, dact1/2-/-, gpc4-/-, wls/-). We realize quantitative measurements may identify subtle differences between genotypes. However, the sheer number of embryos needed to generate these relatively rare combinatorial genotypes and the amount of genotyping required prevented quantitative analyses.
Weakness 2) Germline mutations limit the authors' ability to study a gene's spatiotemporal functional requirement. They therefore cannot concretely attribute nor separate early-stage phenotypes (during gastrulation) to/from late-stage phenotypes (ANC morphological changes).
We agree that we cannot concretely attribute nor separate early and latestage phenotypes. Conditional mutants to provide temporal or cell-specific analysis are beyond the scope of this work. Here we speculate based on evidence obtained by comparing and contrasting embryos with grossly similar early phenotypes and divergent late-stage phenotypes. We believe our findings contribute to the existing body of literature on zebrafish mutants with both early convergent extension defects and craniofacial abnormalities.
Weakness (3) Given that dact1/2 can regulate both canonical and non-canonical wnt signaling, this study did not specifically test which of these pathways is altered in the dact1/2 mutants, and it is currently unclear whether disrupted canonical wnt signaling contributes to the craniofacial phenotypes, even though these phenotypes are typical non-canonical wnt phenotypes.
Previous literature has attributed canonical wnt, non-canonical wnt, and nonwnt functions to dact, and each of these likely contributes to the dact mutant phenotype (Lines 87-89). We performed cursory analyses of tcf/lef:gfp expression in the dact mutants and did not find evidence to support further analysis of canonical wnt signaling in these fish. Single-cell RNAseq did not identify differential expression of any canonical or non-canonical wnt genes in the dact1/2 mutants.
Further research is needed to parse out the intracellular roles of dact1 and dact2 in response to wnt and tgf-beta signaling. Here we find that dact may also have a role in calcium signaling, and further experiments are needed to elaborate this role.
Weakness (4) The use of single-cell RNA sequencing unveiled genes and processes that are uniquely altered in the dact1/2 mutants, but not in the gpc4 mutants during gastrulation. However, how these changes lead to the manifested ANC phenotype later during craniofacial development remains unclear. The authors showed that calpain 8 is significantly upregulated in the mutant, but the fact that only 1 out of 142 calpainoverexpressing animals phenocopied dact1/2 mutants indicates the complexity of the system.
To further test whether capn8 overexpression may contribute to the ANC phenotype we performed overexpression experiments in the resultant embryos of dact1/dact2 double het incross. We found the addition of capn8 caused a small but statistically significant occurrence of the mutant phenotype in dact1/2 double heterozygotes (Fig.8D). We agree with the reviewer that our results indicate a complex system of dysregulation that leads to the mutant phenotype. We hypothesize that a combination of gene dysregulation may be required to recapitulate the mutant ANC phenotype. Further, as capn8 activity is regulated by calcium levels, overexpression of the mRNA alone likely has a small effect on the manifestation of the phenotype.
Weakness (5) Craniofacial phenotypes observed in this study are attributed to convergent extension defects but convergent extension cell movement itself was not directly examined, leaving open if changes in other cellular processes, such as cell differentiation, proliferation, or oriented division, could cause distinct phenotypes between different mutants.
Although convergent extension cell movements were not directly examined, our phenotypic analyses of the dact1/2 mutant are consistent with previous literature where axis extension anomalies were attributed to defects in convergent extension (Waxman 2004, Xing 2018, Topczewski 2001). We do not attribute the axis defect to differentiation differences as in situ analyses of established cell type markers show the existence of these cells, only displaced relative to wildtype (Figure 1). We agree that we cannot rule out a role for differences in apoptosis or proliferation however, we did not detect transcriptional differences in dact1/2 mutants that would indicate this in the single-cell RNAseq dataset. Defects in directed division are possible, but alone would not explain that dact1/2 mutant phenotype, particularly the widened dorsal axis (Figure 1).
Major comments:
Comment (1) The author examined and showed convergent extension phenotype (CE) during body axis elongation in dact1/dact2-/- homozygous mutants. Given that dact2-/- single mutants also displayed shortened axis, the authors should either explain why they didn't analyze CE in dact2-/- (perhaps because that has been looked at in previously published dact2 morphants?) or additionally show whether CE phenotypes are present in dact1 and dact2 single mutants.
The authors should quantify the CE phenotype in both dact2-/- single mutants and dact1/dact2-/- double mutants, and examine whether the CE phenotypes are exacerbated in the double mutants, which may lend support to the authors' idea that dact1 can contribute to CE. The authors stated in the discussion that they "posit that dact1 expression in the mesoderm is required for dorsal CE during gastrulation through its role in noncanonical Wnt/PCP signaling". However, no evidence was presented in the paper to show that dact1 influences CE during body axis elongation.
Because any axis shortening in shortening in dact2-/- single mutants was overcome during the course of development and at 5 dpf there was no noticeable phenotype, we did not analyze the single mutants further.
We have added data to demonstrate the resulting phenotype of each combinatorial genotype to provide a more clear and detailed description of the single and compound mutants (Fig. S3).
Our hypothesis that dact1 may contribute to convergent extension is based on its apparent ability to compensate (either directly or indirectly) for dact2 loss in the dact2-/- single mutant.
Comment (2) Except in Fig. 2, I could not find n numbers given in other experiments. It is therefore unclear if these mutant phenotypes were fully or partially penetrant. In general, there is also a lack of quantifications to help support the qualitative results. For example, in Fig. 4, n numbers should be given and cell movements and/or contributions to the ANC should be quantified to statistically demonstrate that the second stream of CNCC failed to contribute to the ANC.
Similarly, while the fan-shaped and the rod-shaped ANCs are very distinct, the various rod-shaped ANCs need to be quantified (e.g. morphometry or measurements of morphological features) in order for the authors to claim that these are "novel ANC forms", such as in the dact1/2-/-, gpc4/dact1/2-/-, and wls/dact1/2-/- mutants (Fig. 5).
We have added n numbers for each experiment and stated that the rod-like phenotype of the dact1/2-/- mutant was fully penetrant.
Regarding CNCC experiments, we repeated the analysis on 3 individual controls and mutants and did not find evidence that CNCC migration was directly affected in the dact1/2 mutant. Rather, differences in ANC development are likely secondary to defects in floor plate and eye field morphometry. Therefore we did not do any further analyses of the CNCCs.
Regarding figure 5, we have added n numbers. We dissected and analyzed a minimum of three triple mutants (dact1/2-/-,gpc4-/- and dact1/2-/-,wls-/-) and numerous dact1/s double mutants and found that the triple mutant ANC phenotype was consistent and recognizably different enough from the dact1/2-/-, or gpc4 or wls single mutant that morphometry measurements were not needed. Further, the triple mutant phenotype (narrow and shortened) appears to be a simple combination of dact1/2 (narrow) and gpc4/wls (shortened) phenotypes. As we did not find evidence of genetic epistasis, we did not analyze the novel ANC forms further.
Comment (3): The authors have attributed the ANC phenotypes in dact1/2-/- to CE defects and altered noncanonical wnt signaling. However, no evidence was presented to support either. The authors can perhaps utilize diI labelling, photoconversionmediated lineage tracing, or live imaging to study cell movement in the ANC and compare that with the cell movement change in the gpc4-/- , and gpc4/dact1/2-/- mutants in order to first establish that dact1/2 affect CE and then examine how dact1/2 mutations can modulate the CE phenotypes in gpc4-/- mutants.
Concurrently, given that dact1 and dact2 can affect (perhaps differentially) both canonical and non-canonical wnt signaling, the authors are encouraged to also test whether canonical wnt signaling is affected in the ANC or surrounding tissues, or at minimum, discuss the potential role/contribution of canonical wnt signaling in this context.
Given the substantial body of research on the role of noncanonical wnt signaling and planar cell polarity pathway on convergent extension during axis formation (reviewed by Yang and Mlodzik 2015, Roszko et al., 2009) and the resulting phenotypes of various zebrafish mutants (i.e. Xing 2018, Topczewski 2001), including previous research on dact1 and 2 morphants (Waxman 2004), we did not find it necessary to analyze CE cell movements directly.
Our finding that CNCC migration was not defective in the dact1/2 mutants and the knowledge that various zebrafish mutants with anterior patterning defects (slb, smo, cyc) have a similar craniofacial abnormality led us to conclude that the rod-like ANC in the dact1/2 mutant was secondary to an early patterning defect (abnormal eye field morphology). Therefore, testing dact1/2 and convergent extension or wnt signaling in the ANC itself was not an aim of this paper.
Comment (4) The authors also have not ruled out other possibilities that could cause the dact1/2-/- ANC phenotype. For example, increased cell death or reduced proliferation in the ANC may result in the phenotype, and changes in cell fate specification or differentiation in the second CNCC stream may also result in their inability to contribute to the ANC.
We agree that we cannot rule out whether cell death or proliferation is different in the dact1/2 mutant ANC. However, because we do not find the second CNCC stream within the ANC, this is the most likely explanation for the abnormal ANC shape. Because the first stream of CNCC are able to populate the ANC and differentiate normally, it is most likely that the inability of the second stream to populate the ANC is due to steric hindrance imposed by the abnormal cranial/eye field morphology. These hypotheses would need to be tested, ideally with an inducible dact1/2 mutant, however, this is beyond the scope of this paper.
Comment (5) The last paragraph of the section "Genetic interaction of dact1/2 with Wnt regulators..." misuses terms and conflates phenotypes observed. For instance, the authors wrote "dact2 haploinsuffciency in the context of dact1-/-; gpc4-/- double mutant produced ANC in the opposite phenotypic spectrum of ANC morphology, appearing similar to the gpc4-/- mutant phenotype". However, if heterozygous dact2 is not modulating phenotypes in this genetic background, its function is not "haploinsuffcient". The authors then said, "These results show that dact1 and dact2 do not have redundant function during craniofacial morphogenesis, and that dact2 function is more indispensable than dact1". However this statement should be confined to the context of modulating gpc4 phenotypes, which is not clearly stated.
Revised (Lines 380, 382).
Comment (6) For the scRNA-seq analysis, the authors should show the population distribution in the UMAP for the 3 genotypes, even if there are no obvious changes. The authors are encouraged, although not required, to perform pseudotime or RNA velocity analysis to determine if differentiation trajectories are changed in the NC populations, in light of what they found in Fig. 4. The authors can also check the expression of reporter genes downstream of certain pathways, e.g. axin2 in canonical wnt signaling, to query if these signaling activities are changed (also related to point #3 above).
We have added population distribution data for the 3 genotypes to Supplemental Figure 4. Although RNA velocity analysis would be an interesting additional analysis, we would hypothesize that the NC population is not driving the differences in phenotype. Rather these are likely changes in the anterior neural plate and mesoderm.
Comment (7) While the phenotypic difference between gpc4-/- and dact1/2-/- are in the ANC at a later stage, ssRNA-seq was performed using younger embryos. The authors should better explain the rationale and discuss how transcriptomic differences in these younger embryos can explain later phenotypes. Importantly, dact1, dact2, and capn8 expression were not shown in and around the ANC during its development and this information is crucial for interpreting some of the results shown in this paper. For example, if dact1 and dact2 are expressed during ANC development, they may have specific functions during that stage. Alternatively, if dact1 and dact2 are not expressed when the second stream CNCCs are found to be outside the ANC, then the ANC phenotype may be due to dact1/2's functions at an earlier time point. The author's statement in the discussion that "embryonic fields determined during gastrulation effect the CNCC ability to contribute to the craniofacial skeleton" is currently speculative.
We have reworded our rationale and hypothesis to increase clarity (Lines 391-405). We believe that the ANC phenotype of the dact1/2 mutants is secondary to defective CE and anterior axis lengthening, as has been reported for the slb mutant (Heisenberg 1997, 2000). We utilized the gpc4 mutant as a foil to the dact1/2 mutant, as the gpc4 mutant has defective CE and axis extension without the same craniofacial phenotype.
We have added dact1 and dact2 WISH of 24 and 48 hpf (Fig1. D,E) to show expression during ANC development.
Comment (8) The functional testing of capn8 did not yield a result that would suggest a strong effect, as only 1 in 142 animals phenocopied dact1/2. Therefore, while the result is interesting, the authors should tone down its importance. Alternatively, the authors can try knocking down capn8 in the dact1/2 mutants to test how that affects the CE phenotype during axis elongation, as well as ANC morphogenesis.
As overexpression of capn8 in wildtype animals did not result in a significant phenotype, we tested capn8 overexpression in compound dact1/2 mutants as these have a sensitized background. We found a small but statistically significant effect of exogenous capn8 in dact1+/-,dact2+/- animals. While the effect is not what one would expect comparing to Mendelian genetic ratios, the rod-like ANC phenotype is an extreme craniofacial dysmorphology not observed in wildtype or mRNA injected embryos hence significant. The experiment is limited by the available technology of over-expressing mRNA broadly without temporal or cell specificity control. It is possible that if capn8 over-expression was restricted to specific cells (floor plate, notochord or mesoderm) and at the optimal time period during gastrulation/segmentation that the aberrant ANC phenotype would be more robust. We agree with the reviewer that although the finding of a new role for capn8 during development is interesting, its importance in the context of dact should be toned down and we have altered the manuscript accordingly (Lines 455-467).
Comment (9) A difference between the two images in Fig. 8B is hard to distinguish.
Consider showing flat-mount images.
We have added flat-mount images to Fig. 8B
Minor comments:
Comment (1) wnt11f2 is spelled incorrectly in a couple of places, e.g. "wnt11f2l" in the abstract and "wntllf2" in the discussion.
Revised throughout.
Comment (2) For Fig. 1D, the white dact1 and yellow dact2 are hard to distinguish in the merged image. Consider changing one of their colors to a different one and only merge dact1 and dact2 without irf6 to better show their complementarity.
We agree with the reviewer that the expression patterns of dact1 and dact2 are difficult to distinguish in the merged image. We have added outlines of the cartilage elements to the images to facilitate comparisons of dact1 and dact2 expression (Fig 1F).
Comment (3) For Fig. 1E, please label the clusters mentioned in the text so readers can better compare expressions in these cell populations.
We have moved this data to supplementary figure S1 and have added labels.
Comment (4) The citing and labelling of certain figures can be more specific. For example, Fig. S1A, B, and Fig. S1C should be used instead of just Fig. S1 (under the section titled dact1 and dact2 contribute to axis extension...". Similarly, Fig. 4 can be better labeled with alphabets and cited at the relevant places in the text.
We have modified the labeling of the figures according to the reviewer’s suggestion (Fig S2 (previously S1), Fig4) and have added reference to these labels in the text (Lines 202, 204, 212, 328, 334, 336).
Comment (5) For Fig. 2B, the (+/+,-/-) on x-axis should be (+/-,-/-).
Revised in Figure 2B.
Comment (6) Several figures are incorrectly cited. Fig. 2C is not cited, and the "Fig. 2C" and "Fig. 2D" cited in the text should be "Fig. 2D" and "Fig. 2E" respectively. Similarly, Fig. 5C and D are not cited in the text and the cited Fig. 5C should be 5E. The VC images in Fig. 5 are not talked about in the text. Finally, Fig. 7C was also not mentioned in the text.
We have corrected the labeling and have added descriptions of each panel in the Results (Fig.2 Line 231, 237, 242, Fig 5 Line 373, 381, Fig 7 line 431).
Comment (7) In the main text, it is indicated that zebrafish at 3ss were used for ssRNAseq, but in the figure legend, it says 4ss.
Revised (Line 682)
Comment (8) No error bars in Fig. S1B and the difference between the black and grey shades in Fig. S1D is not explained.
Error bars are not included in the graphs of qPCR results (now Fig S2C) as these are results of a pool of 8 embryos performed one time. We have added a legend to explain the gray vs. black bars (now Fig S2E).
Reviewer #3 (Public Review):
Weaknesses: The hypotheses are very poorly defined and misinterpret key previous findings surrounding the roles of wnt11 and gpc4, which results in a very confusing manuscript. Many of the results are not novel and focus on secondary defects. The most novel result of overexpressing calpain8 in dact1/2 mutants is preliminary and not convincing.
We apologize for not presenting the question more clearly. The Introduction was revised with particular attention to distinguish this work using genetic germline mutants from prior morpholino studies. Please refer to pages 4-5, lines 106-121.
Weakness 1) One major problem throughout the paper is that the authors misrepresent the fact that wnt11f2 and gpc4 act in different cell populations at different times. Gastrulation defects in these mutants are not similar: wnt11 is required for anterior mesoderm CE during gastrulation but not during subsequent craniofacial development while gpc4 is required for posterior mesoderm CE and later craniofacial cartilage morphogenesis (LeClair et al., 2009). Overall, the non-overlapping functions of wnt11 and gpc4, both temporally and spatially, suggest that they are not part of the same pathway.
We have reworded the text to add clarity. While the loss of wnt11 versus the loss of gpc4 may affect different cell populations, the overall effect is a shortened body axis. We stressed that it is this similar impaired axis elongation phenotype but discrepant ANC morphology phenotypes in the opposite ends of the ANC morphologic spectrum that is very interesting and leads us to investigate dact1/2 in the genetic contexts of wnt11f2 and gpc4. Pls refer to page 4, lines 73-84. Further, the reviewer’s comment that wnt11 and gpc4 are spatially and temporally distinct is untested. We think the reviewer’s claim of gpc4 acting in the posterior mesoderm refers to its requirement in the tailbud (Marlow 2004). However this does not exclude gpc4 from acting elsewhere as well. Further experiments would be necessary. Both wnt11f2 and gpc4 regulate non-canonical wnt signaling and are coexpressed during some points of gastrulation and CF development (Gupta et al., 2013; Sisson 2015). This data supports the possibility of overlapping roles.
Weakness 2) There are also serious problems surrounding attempts to relate single-cell data with the other data in the manuscript and many claims that lack validation. For example, in Fig 1 it is entirely unclear how the Daniocell scRNA-seq data have been used to compare dact1/2 with wnt11f2 or gpc4. With no labeling in panel 1E of this figure these comparisons are impossible to follow. Similarly, the comparisons between dact1/2 and gpc4 in scRNA-seq data in Fig. 6 as well as the choices of DEGs in dact1/2 or gpc4 mutants in Fig. 7 seem arbitrary and do not make a convincing case for any specific developmental hypothesis. Are dact1 and gpc4 or dact2 and wnt11 coexpressed in individual cells? Eyeballing similarity is not acceptable.
We have moved the previously published Daniocell data to Figure S1 and have added labeling. These data are meant to complement and support the WISH results and demonstrate the utility of using available public Daniocell data. Please recommend how we can do this better or recommend how we can remediate this work with specific comment.
Regarding our own scRNA-seq data, we have added rationale (line 391-403) and details of the results to increase clarity (Lines 419-436). We have added a panel to Figure 6 (panel A) to help illustrate or rationale for comparing dact1/2 to gpc4 mutants to wt. The DEGs displayed in Fig.7A are the top 50 most differentially expressed genes between dact1/2 mutants and WT (Figure 7 legend, line 422-424).
We have looked at our scRNA-seq gene expression results for our clusters of interest (lateral plate mesoderm, paraxial mesoderm, and ectoderm). We find dact1, dact2, and gpc4 co-expression within these clusters. Knowing whether these genes are coexpressed within the same individual cell would require going back and analyzing the raw expression data. We do not find this to be necessary to support our conclusions. The expression pattern of wnt11f2 is irrelevant here.
Weakness 3) Many of the results in the paper are not novel and either confirm previous findings, particularly Waxman et al (2004), or even contradict them without good evidence. The authors should make sure that dact2 loss-of-function is not compensated for by an increase in dact1 transcription or vice versa. Testing genetic interactions, including investigating the expression of wnt11f2 in dact1/2 mutants, dact1/2 expression in wnt11f2 mutants, or the ability of dact1/2 to rescue wnt11f2 loss of function would give this work a more novel, mechanistic angle.
We clarified here that the prior work carried out by Waxman using morppholinos, while acceptable at the time in 2004, does not meet the rigor of developmental studies today which is to generate germline mutants. The reviewer’s acceptance of the prior work at face value fails to take the limitation of prior work into account. Further, the prior paper from Waxman et al did not analyze craniofacial morphology other than eyeballing the shape of the head and eyes. Please compare the Waxman paper and this work figure for figure and the additional detail of this study should be clear. Again, this is by no means any criticism of prior work as the prior study suffered from the technological limitations of 2004, just as this study also is the best we can do using the tools we have today. Any discrepancies in results are likely due to differences in morpholino versus genetic disruption and most reviewers would favor the phenotype analysis from the germline genetic context. We have addressed these concerns as objectively as we can in the text (Lines 482-493). The fact that dact1/2 double mutants display a craniofacial phenotype while the single mutants do not, suggests compensation (Lines 503-505), but not necessarily at the mRNA expression level (Fig. S2C).
This paper tests genetic interaction through phenotyping the wntll/dact1/dact2 mutant.
Our results support the previous literature that dact1/2 act downstream of wnt11 signaling. There is no evidence of cross-regulation of gene expression. We do not expect that changes in wnt11 or dact would result in expression changes in the others.
RNA-seq of the dact1/2 mutants did not show changes in wnt11 gene expression. Unless dact1 and/or dact2 mRNA are under expressed in the wnt11 mutant, we would not expect a rescue experiment to be informative. And as wnt11 is not a focus of this paper, we have not performed the experiment.
Weakness 4) The identification of calpain 8 overexpression in Dact1/2 mutants is interesting, but getting 1/142 phenotypes from mRNA injections does not meet reproducibility standards.
As the occurrence of the mutant phenotype in wildtype animals with exogenous capn8 expression was below what would meet reproducibility standards, we performed an additional experiment where capn8 was overexpressed in embryos resulting from dact1/dact2 double heterozygotes incross (Fig. 8). We reasoned that an effect of capn8 overexpression may be more robust on a sensitized background. We found a statistically significant effect of capn8 in dact1/2 double heterozygotes, though the occurrence was still relatively rare (6/80). These data suggest dysregulation of capn8 contributes to the mutant ANC phenotype, though there are likely other factors involved.
Comment: The manuscript title is not representative of the findings of this study.
We revised the title to strictly describe that we generated and carried out genetic analysis in loss of function compound mutants (Genetic requirement) and that we found capn8 was important which modified this requirement.
Introduction: p.4:
Comment: Anterior neurocranium (ANC) - it has to be stated that this refers to the combined ethmoid plate and trabecular cartilages.
Thank you, we agree that the ANC and ethmoid plate terminology has been confusing in the literature and we should endeavor to more clearly describe that the phenotypes in question are all in the ethmoid plate and the trabeculae are not affected. ANC has been replaced with ethmoid plate (EP) throughout the manuscript and figures. We also describe that all the observed phenotypes affect the ethmoid plate and not the trabeculae, (pages 13, Lines 265-267).
Comment: Transverse dimension is incorrect terminology - replace with medio-lateral.
Revised (Lines 69, 74).
Comment: Improper way of explaining the relationship between mutant and gene..."Another mutant knypek, later identified as gpc4..." a better way to explain this would be that the knypek mutation was found to be a non-sense mutation in the gpc4 gene.
Revised (Line 71)
Comment: "...the gpc4 mutant formed an ANC that is wider in the transverse dimension than the wildtype, in the opposite end of the ANC phenotypic spectrum compared to wnt11f2...These observations beg the question how defects in early patterning and convergent extension of the embryo may be associated with later craniofacial morphogenesis."
This statement is broadly representative of the general failure to distinguish primary from secondary defects in this manuscript. Focusing on secondary defects may be useful to understand the etiology of a human disease, but it is misleading to focus on secondary defects when studying gene function. The rod-like ethmoid of slb mutant results from a CE defect of anterior mesoderm during gastrulation(Heisenberg et al. 1997, 2000), while the wide ethmoid plate of kny mutants results from CE defects of cartilage precursors (Rochard et al., 2016). Based on this evidence, wnt11f2 and gpc4 act in different cell populations at different times.
It is true that the slb mutant craniofacial phenotype has been stated as secondary to the CE defect during gastrulation and the kny phenotype as primary to chondrocyte CE defects in the ethmoid, however the direct experimental evidence to conclude only primary or only secondary effects does not yet exist. There is no experiment to our knowledge where wnt11f2 was found to not affect ethmoid chondrocytes directly. Likewise, there is no experiment having demonstrated that dysregulated CE in gpc4 mutants does not contribute to a secondary abnormality in the ethmoid.
Here, we are analyzing the CE and craniofacial phenotypes of the dact1/2 mutants without any assumptions about primary or secondary effects and without drawing any conclusions about wnt11f2 or gpc4 cellular mechanisms.
Comment: "The observation that wnt11f2 and gpc4 mutants share similar gastrulation and axis extension phenotypes but contrasting ANC morphologies supports a hypothesis that convergent extension mechanisms regulated by these Wnt pathway genes are specific to the temporal and spatial context during embryogenesis."
This sentence is quite vague and potentially misleading. The gastrulation defects of these 2 mutants are not similar - wnt11 is required for anterior mesoderm CE during gastrulation and has not been shown to be active during subsequent craniofacial development while gpc4 is required for posterior mesoderm CE and craniofacial cartilage morphogenesis (LeClair et al., 2009). Here again, the non-spatially overlapping functions of wnt11 and gpc4 suggest that are not part of the same pathway.
Though the cells displaying defective CE in wnt11f2 and gpc4 mutants are different, the effects on the body axis are similar. The dact1/2 showed a similar axis extension defect (grossly) to these mutants. Our aim with the scRNA-seq experiment was to determine which cells and gene programs are disrupted in dact1/2 mutants. We found that some cell types and programs were disrupted similarly in dact1/2 mutants and gpc4 mutants, while other cells and programs were specific to dact1/2 versus gpc4 mutants. We can speculate that these that were specific to dact1/2 versus gpc4 may be attributed to CE in the anterior mesoderm, as is the case for wnt11.
p.5
Comment: "We examined the connection between convergent extension governing gastrulation, body axis segmentation, and craniofacial morphogenesis." A statement focused on the mechanistic findings of this paper would be welcome here, instead of a claim for a "connection" that is vague and hard to find in the manuscript.
We have rewritten this statement (Line 125).
p.7 Results:
Comment: It is unclear why Farrel et al., 2018 and Lange et al., 2023 are appropriate references for WISH. Please justify or edit.
This was a mistake and has been edited (Page 9).
Comment: " Further, dact gene expression was distinct from wnt11f2." This statement is inaccurate in light of the data shown in Fig1A and the following statements - please edit to reflect the partially overlapping expression patterns.
We have edited to clarify (Lines 142-143).
p.8
Comment: "...we examined dact1 and 2 expression in the developing orofacial tissues. We found that at 72hpf..." - expression at 72hpf is not relevant to craniofacial morphogenesis, which takes place between 48h-60hpf (Kimmel et al., 1998; Rochard et al., 2016; Le Pabic et al., 2014).
We have included images and discussion of dact1 and dact2 expression at earlier time points that are important to craniofacial development (Lines 160-171)(Fig 1D,E).
Comment: "This is in line with our prior finding of decreased dact2 expression in irf6 null embryos". - This statement is too vague. How are th.e two observations "in line".
We have removed this statement from the manuscript.
Comment: Incomplete sentence (no verb) - "The differences in expression pattern between dact1 and dact2...".
Revised (Line 172).
Comment: "During embryogenesis..." - Please label the named structures in Fig.1E.
Please be more precise with the described expression time. Also, it would be useful to integrate the scRNAseq data with the WISH data to create an overall picture instead of treating each dataset separately.
We have moved the previously published Daniocell data to supplementary figure S1 and have labeled the key cell types.
p.9
Comment: "The specificity of the gene disruption was demonstrated by phenotypic rescue with the injection of dact1 or dact2 mRNA (Fig. S1)." - please describe what is considered a phenotypic rescue.
-The body axis reduction of dact mutants needs to be documented in a figure. Head pictures are not sufficient. Is the head alone affected, or both the head and trunk/tail? Fig.2E suggests that both head and trunk/tail are affected - please include a live embryos picture at a later stage.
We have added a description of how phenotypic rescue was determined (Line 208). We have added a figure with representative images of the whole body of dact1/2 mutants. Measurements of body length found a shortening in dact1/2 double mutants versus wildtype, however differences were not found to be significantly different by ANOVA (Fig. 3C, Fig. S3, Line 270-275).
p. 11
Comment: "These dact1-/-;dact2-/- CE phenotypes were similar to findings in other Wnt mutants, such as slb and kny (Heisenberg, Tada et al., 2000; Topczewski, Sepich et al., 2001)." The similarity between slb and kny phenotypes should be mentioned with caution as CE defects affect different regions in these 2 mutants. It is misleading to combine them into one phenotype category as wnt11 and gpc4 are most likely not acting in the same pathway based on these spatially distinct phenotypes.
Here we are referring to the grossly similar axis extension defects in slb and kny mutants. We refer to these mutants to illustrate that dact1 and or 2 deficiency could affect axis extension through diverse mechanisms. We have added text for clarity (Lines 249-252).
Comment: "No craniofacial phenotype was observed in dact1 or dact2 single mutants. However, in-crossing to generate [...] compound homozygotes resulted in dramatic craniofacial deformity."
This result is intriguing in light of (1) the similar craniofacial phenotype previously reported by Waxman et al (2004) using morpholino- based knock-down of dact2, and the phenomenon of genetic compensation demonstrated by Jakutis and Stainier 2001 (https://doi.org/10.1146/annurev-genet-071719-020342). The authors should make sure that dact2 loss-of-function is not compensated for by an increase in dact1 transcription, as such compensation could lead to inaccurate conclusions if ignored.
We agree with the reviewer that genetic compensation of dact2 by dact1 likely explains the different result found in the dact2 morphant versus CRISPR mutant. We found increased dact1 mRNA expression in the dact2-/- mutant (Fig S2X) however a more thorough examination is required to draw a conclusion. Interestingly, we found that in wildtype embryos dact1 and dact2 expression patterns are distinct though with some overlap. It would be informative to investigate whether the dact1 expression pattern changes in dact2-/- mutants to account for dact2 loss.
Comment: "Lineage tracing of NCC movements in dact1/2 mutants reveals ANC composition" - the title is misleading - ANC composition was previously investigated by lineage tracing (Eberhardt et al., 2006; Wada et al., 2005).
This has been reworded (Line 292)
p.13
Comment: There is no frontonasal prominence in zebrafish.
This is true, texts have been changed to frontal prominence. (Lines 293,
299, 320)
Comment: The rationale for investigating NC migration in mutants where there is a gastrula-stage failure of head mesoderm convergent extension is unclear. The whole head is deformed even before neural crest cells migrate as the eye field does not get split in two (Heisenberg et al., 1997; 2000), suggesting that the rod-like ethmoid plate is a secondary defect of this gastrula-stage defect. In addition, neural crest migration and cartilage morphogenesis are different processes, with clear temporal and spatial distinctions.
We carried out the lineage tracing experiment to determine which NC streams contributed to the aberrantly shaped EP, whether the anteromost NC stream frontal prominence, the second NC stream of maxillary prominence, or both. We found that the anteromost NCC did contribute to the rod-like EP, which is different from when hedgehod signaling is disrupted, So while it is possible that the gastrula-effect head mesoderm CE caused a secondary effect on NC migration, how the anterior NC stream and second NC stream are affected differently between dact1/2 and shh pathway is interesting. We added discussion of this observation to the manuscript (page 23, Lines 514-520).
p. 14-16
Comment: Based on the heavy suspicion that the rod-like ethmoid plate of the dact1/2 mutant results from a gastrulation defect, not a primary defect in later craniofacial morphogenesis, the prospect of crossing dact1/2 mutants with other wnt-pathway mutants for which craniofacial defects result from craniofacial morphogenetic defects is at the very least unlikely to generate any useful mechanistic information, and at most very likely to generate lots of confusion. Both predictions seem to take form here.
However, the ethmoid plate phenotype observed in the gpc4-/-; dact1+/-; dact2-/- mutants (Fig. 5E) does suggest that gpc4 may interact with dact1/2 during gastrulation, but that is the case only if dact1+/-; dact2-/- mutants do not have an ethmoid cartilage defect, which I could not find in the manuscript. Please clarify.
The perspective that the rod-like EP of the dact1/2 is due to gastrulation defect is being examined here. Why would other mutants such as wnt11f2 and gpc4 that have gastrulation CE defects have very different EP morphology, whether primary or secondary NCC effect? Further dact1 and dact2 were reported as modifiers of Wnt signaling, so it is logical to genetically test the relationship between dact1, dact2, wnt11f2, gpc4 and wls. The experiment had to be done to investigate how these genetic combinations impact EP morphology. This study found that combined loss of dact1, dact2 and wls or gpc4 yielded new EP morphology different than those previously observed in either dact1/2, wls, gpc4, or any other mutant is important, suggesting that there are distinct roles for each of these genes contributing to facial morphology, that is not explained by CE defect alone.
Comment: I encourage the authors to explore ways to test whether the rod-like ethmoid of dact1/2 mutants is more than a secondary effect of the CE failure of the head mesoderm during gastrulation. Without this evidence, the phenotypes of dact1/2 -gpc4 or - wls are not going to convince us that these factors actually interact.
Actually, we find our results to support the hypothesis that the ethmoid of the dact1/2 mutants is a secondary effect of defective gastrulation and anterior extension of the body axis. However, our findings suggest (by contrasting to another mutant with impaired CE during gastrulation) that this CE defect alone cannot explain the dysmorphic ethmoid plate. Our single-cell RNA seq results and the discovery of dysregulated capn8 expression and proteolytic processes presents new wnt-regulated mechanisms for axis extension.
p. 20 Discussion
Comment: "Here we show that dact1 and dact2 are required for axis extension during gastrulation and show a new example of CE defects during gastrulation associated with craniofacial defects."
Waxman et al. (2004) previously showed that dact2 is involved in CE during gastrulation.
Heisenberg et al. (1997, 2000), previously showed with the slb mutant how a CE defect during gastrulation causes a craniofacial defect.
The Waxman paper using morpholino to disrupt dact2 is produced limited analysis of CE and no analysis of craniofacial morphogenesis. We generated genetic mutants here to validate the earlier morpholino results and to analyze the craniofacial phenotype in detail. We have removed the word “new” to make the statement more clear (Line 475).
Comment: "Our data supports the hypothesis that CE gastrulation defects are not causal to the craniofacial defect of medially displaced eyes and midfacial hypoplasia and that an additional morphological process is disrupted."
It is unclear to me how the authors reached this conclusion. I find the view that medially displaced eyes and midfacial hypoplasia are secondary to the CE gastrulation defects unchallenged by the data presented.
This statement was removed and the discussion was reworded.
Comment: The discussion should include a detailed comparison of this study's findings with those of zebrafish morpholino studies.
We have added more discussion to compare ours to the previous morpholino findings (Lines 476-484).
Comment: The discussion should try to reconcile the different expression patterns of dact1 and dact2, and the functional redundancy suggested by the absence of phenotype of single mutants. Genetic compensation should be considered (and perhaps tested).
The different expression patterns of dact1 and dact2 along with our finding that dact1 and dact2 genetic deficiency differently affect the gpc4 mutant phenotype suggest that dact1 and dact2 are not functionally redundant during normal development. This is in line with the previously published data showing different phenotypes of dact1 or dact2 knockdown. However, our results that genetic ablation of both dact1 and dact2 are required for a mutant phenotype suggests that these genes can compensate upon loss of the other. This would suggest then that the expression pattern of dact1 would be changed in the dact2 mutant and visa versa. We find that this line of investigation would be interesting in future studies. We have addressed this in the Discussion (Lines 485498).
Comment: "Based on the data...Conversely, we propose...ascribed to wnt11f2 "
Functional data always prevail overexpression data for inferring functional requirements.
This is true.
p.21
Comment: "Our results underscore the crucial roles of dact1 and dact2 in embryonic development, specifically in the connection between CE during gastrulation and ultimate craniofacial development."
How is this novel in light of previous studies, especially by Waxman et al. (2004) and Heisenberg et al. (1997, 2000). In this study, the authors fail to present compelling evidence that craniofacial defects are not secondary to the early gastrulation defects resulting from dact1/2 mutations. p. 22
We have not claimed that the craniofacial defects are not secondary to the gastrulation defects. In fact, we state that there is a “connection”. Further, we do not claim that this is the first or only such finding. We believe our findings have validated the previous dact morpholino experiments and have contributed to the body of literature concerning wnt signaling during embryogenesis.
Comment: The section on Smad1 discusses a result not reported in the results section. Any data discussed in the discussion section needs to be reported first in the results section.
We have added a comment on the differential expression of smad1 to the results section (Lines 446-448).