Netrin signaling mediates survival of dormant epithelial ovarian cancer cells

  1. London Regional Cancer Program, London Health Sciences Centre Research Institute, London, Ontario, Canada, N6A 4L6
  2. Department of Biochemistry, University of Western Ontario, London, ON, Canada, N6A 5C1
  3. Department of Pathology and Laboratory Medicine, University of Western Ontario, London, ON, Canada, N6A 5C1
  4. The Mary and John Knight Translational Ovarian Cancer Research Unit, London Regional Cancer Program, London, Ontario, Canada, N6A 4L6
  5. Apoptosis, Cancer and Development Laboratory - Equipe labellisée ‘La Ligue’, LabEx DEVweCAN, Institut Convergence PLAsCAN, Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM U1052-CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon1, Centre Léon Bérard, 69008 Lyon, France
  6. Netris Pharma, 69008 Lyon, France
  7. Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, Ontario, Canada, M5G 1L7
  8. Department of Medical Biophysics, University of Toronto, 1 King’s College Circle, Toronto, Ontario, Canada, M5S 1A8
  9. Department of Oncology, Western University, London, Ontario, Canada, N6A 4L6
  10. Department of Obstetrics and Gynecology, Western University, London, Ontario, Canada, N6A 5W9
  11. Department of Anatomy and Cell Biology, Western University, London, Ontario, Canada, N6A 5C1
  12. Children’s Health Research Institute, London, Ontario, Canada, N6A 4V2

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Ivan Topisirovic
    Jewish General Hospital, Montreal, Canada
  • Senior Editor
    Erica Golemis
    Fox Chase Cancer Center, Philadelphia, United States of America

Reviewer #1 (Public Review):

Summary:

Perampalam et al. describe novel methods for genome-wide CRISPR screening to identify and validate genes essential for HGSOC spheroid viability. In this study, they report that Netrin signaling is essential for maintaining disseminated cancer spheroid survival, wherein overexpression of Netrin pathway genes increases tumor burden in a xenograft model of ovarian cancer. They also show that high netrin expression correlates with poor survival outcomes in ovarian cancer patients. The study provides insights into the biology of netrin signaling in DTC cluster survival and warrants development of therapies to block netrin signaling for treating serous ovarian cancer.

Strengths:

- The study identifies Netrin signaling to be important in disseminated cancer spheroid survival
- A Novel GO-CRISPR methodology was used to find key genes and pathways essential for disseminated cancer cell survival

Weaknesses:

- The term dormancy is not fully validated and requires additional confirmation to claim the importance of Netrin signaling in "dormant" cancer survival.
- Findings shown in the study largely relate to cancer dissemination and DTS survival rather than cancer dormancy.

Reviewer #2 (Public Review):

Summary:

In this article, the authors employed modified CRISPR screens ["guide-only (GO)-CRISPR"] in the attempt to identify the genes which may mediate cancer cell dormancy in the high grade serous ovarian cancer (HGSOC) spheroid culture models. Using this approach, they observed that abrogation of several of the components of the netrin (e.g., DCC, UNC5Hs) and MAPK pathways compromise the survival of non-proliferative ovarian cancer cells. This strategy was complemented by the RNAseq approach which revealed that a number of the components of the netrin pathway are upregulated in non-proliferative ovarian cancer cells and that their overexpression is lost upon disruption of DYRK1A kinase that has been previously demonstrated to play a major role in survival of these cells. Perampalam et al. then employed a battery of cell biology approaches to support the model whereby the Netrin signaling governs the MEK-ERK axis to support survival of non-proliferative ovarian cancer cells. Moreover, the authors show that overexpression of Netrins 1 and 3 bolsters dissemination of ovarian cancer cells in the xenograft mouse model, while also providing evidence that high levels of the aforementioned factors are associated with poor prognosis of HGSOC patients.

Strengths:

Overall it was thought that this study is of potentially broad interest inasmuch as it provides previously unappreciated insights into the potential molecular underpinnings of cancer cell dormancy, which has been associated with therapy resistance, disease dissemination, and relapse as well as poor prognosis. Notwithstanding the potential limitations of cellular models in mimicking cancer cell dormancy, it was thought that the authors provided sufficient support for their model that netrin signaling drives survival of non-proliferating ovarian cancer cells and their dissemination. Collectively, it was thought that these findings hold a promise to significantly contribute to the understanding of the molecular mechanisms of cancer cell dormancy and in the long term may provide a molecular basis to address this emerging major issue in the clinical practice.

Weaknesses:

Several issues were observed regarding methodology and data interpretation. The major concerns were related to the reliability of modelling cancer cell dormancy. To this end, it was relatively hard to appreciate how the employed spheroid model allows to distinguish between dormant and e.g., quiescent or even senescent cells. This was in contrast to solid evidence that netrin signaling stimulates abdominal dissemination of ovarian cancer cells in the mouse xenograft and their survival in organoid culture. Moreover, the role of ERK in mediating the effects of netrin signaling in the context of the survival of non-proliferative ovarian cancer cells was found to be somewhat underdeveloped.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation