Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.
Read more about eLife’s peer review process.Editors
- Reviewing EditorEmily NoëlUniversity of Sheffield, Sheffield, United Kingdom
- Senior EditorDidier StainierMax Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
Reviewer #1 (Public Review):
Summary:
The authors describe the dynamic distribution of laminin in the olfactory system and forebrain. Using immunohistochemistry and transgenic lines, they found that the olfactory system and adjacent brain tissues are enveloped by BMs from the earliest stages of olfactory system assembly. They also found that laminin deposits follow the axonal trajectory of axons. They performed a functional analysis of the sly mutant to analyse the function of laminin γ1 in the development of the zebrafish olfactory system. Their study revealed that laminin enables the shape and position of placodes to be maintained late in the face of major morphogenetic movements in the brain, and its absence promotes the local entry of sensory axons into the brain and their navigation towards the olfactory bulb.
Strengths:
-They showed that in the sly mutants, no BM staining of laminin and Nidogen could be detected around the OP and the brain. The authors then elegantly used electron microscopy to analyse the ultrastructure of the border between the OP and the brain in control and sly mutant conditions.
-To analyse the role of laminin γ1-dependent BMs in OP coalescence, the authors used the cluster size of Tg(neurog1:GFP)+ OP cells at 22 hpf as a marker. They found that the mediolateral dimension increased specifically in the mutants. However, proliferation did not seem to be affected, although apoptosis appeared to increase slightly at a later stage. This increase could therefore be due to a dispersal of cells in the OP. To test this hypothesis, the authors then analysed the cell trajectories and extracted 3D mean square displacements (MSD), a measure of the volume explored by a cell in a given period of time. Their conclusion indicates that although brain cell movements are increased in the absence of BM during coalescence phases, overall OP cell movements occur within normal parameters and allow OPs to condense into compact neuronal clusters in sly mutants. The authors also analysed the dimensions of the clusters composed of OMP+ neurons. Their results show an increase in cluster size along the dorso-ventral axis. These results were to be expected since, compared with BM, early neurog1+ neurons should compact along the medio-lateral axis, and those that are OMP+ essentially along the dorso-ventral axis. In addition to the DV elongation of OP tissue, the authors show the existence of isolated and ectopic (misplaced) YFP+ cells in sly mutants.
-To understand the origin of these phenotypes, the authors analysed the dynamic behaviour of brain cells and OPs during forebrain flexion. The authors then quantitatively measured brain versus OPs in the sly mutant and found that the OP-brain boundary was poorly defined in the sly mutant compared with the control. Once again, the methods (cell tracks, brain size, and proliferation/apoptosis, and the shape of the brain/OP boundary) are elegant but the results were expected.
-They then analysed the dynamic behaviour of the axon using live imaging. Thus, olfactory axon migration is drastically impaired in sly mutants, demonstrating that Laminin γ1-dependent BMs are essential for the growth and navigation of axons from the OP to the olfactory bulb.
-The authors therefore performed a quantitative analysis of the loss of function of Laminin γ1. They propose that the BM of the OP prevents its deformation in response to mechanical forces generated by morphogenetic movements of the neighbouring brain.
Weaknesses:
- The authors did not analyse neurog1 + axonal migration at the level of the single cell and instead made a global analysis. An analysis at the cell level would strengthen their hypotheses.
- Rescue experiments by locally inducing Laminin expression would have strengthened the paper.
-The paper lacks clarity between the two neuronal populations described (early EONs and late OSNs).
-The authors quantitatively measured brain versus OPs in the sly mutant and found that the OP-brain boundary was poorly defined in the sly mutant compared with the control. Once again, the methods (cell tracks, brain size, proliferation/apoptosis, and the shape of the brain/OP boundary) are elegant but the results were expected.
- A missing point in the paper is the effect of Laminin γ1 on the migration of cranial NCCs that interact with OP cells. The authors could have analysed the dynamic distribution of neural crest cells in the sly mutant.
Reviewer #2 (Public Review):
Summary:
This manuscript addresses the role of the extracellular matrix in olfactory development. Despite the importance of these extracellular structures, the specific roles and activities of matrix molecules are still poorly understood. Here, the authors combine live imaging and genetics to examine the role of laminin gamma 1 in multiple steps of olfactory development. The work comprises a descriptive but carefully executed, quantitative assessment of the olfactory phenotypes resulting from loss of laminin gamma. Overall, this is a constructive advance in our understanding of extracellular matrix contributions to olfactory development, with a well-written Discussion with relevance to many other systems.
Strengths:
The strengths of the manuscript are in the approaches: the authors have combined live imaging, careful quantitative analyses, and molecular genetics. The work presented takes advantage of many zebrafish tools including mutants and transgenics to directly visualize the laminin extracellular matrix in living embryos during the developmental process.
Weaknesses:
The weaknesses are primarily in the presentation of some of the imaging data. In certain cases, it was not straightforward to evaluate the authors' interpretations and conclusions based on the single confocal sections included in the manuscript. For example, it was difficult to assess the authors' interpretation of when and how laminin openings arise around the olfactory placode and brain during olfactory axon guidance.
Reviewer #3 (Public Review):
This is a beautifully presented paper combining live imaging and analysis of mutant phenotypes to elucidate the role of laminin γ1-dependent basement membranes in the development of the zebrafish olfactory placode. The work is clearly illustrated and carefully quantified throughout. There are some very interesting observations based on the analysis of wild-type, laminin γ1, and foxd3 mutant embryos. The authors demonstrate the importance of a Laminin γ1-dependent basement membrane in olfactory placode morphogenesis, and in establishing and maintaining both boundaries and neuronal connections between the brain and the olfactory system. There are some very interesting observations, including the identification of different mechanisms for axons to cross basement membranes, either by taking advantage of incompletely formed membranes at early stages, or by actively perforating the membrane at later ones.
This is a valuable and important study but remains quite descriptive. In some cases, hypotheses for mechanisms are stated but are not tested further. For example, the authors propose that olfactory axons must actively disrupt a basement membrane to enter the brain and suggest alternative putative mechanisms for this, but these are not tested experimentally. In addition, the authors propose that the basement membrane of the olfactory placode acts to resist mechanical forces generated by the morphogenetic movement of the developing brain, and thus to prevent passive deformation of the placode, but this is not tested anywhere, for example by preventing or altering the brain movements in the laminin γ1 mutant.