Whole blood transcriptional profiles and the pathogenesis of tuberculous meningitis

  1. Oxford University Clinical Research Unit, Ho Chi Minh City, Viet Nam
  2. Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
  3. Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
  4. Pham Ngoc Thanh Hospital, Ho Chi Minh City, Viet Nam
  5. Hospital for Tropical Diseases, Ho Chi Minh City, Viet Nam
  6. Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Viet Nam
  7. Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Bavesh Kana
    University of the Witwatersrand, Johannesburg, South Africa
  • Senior Editor
    Bavesh Kana
    University of the Witwatersrand, Johannesburg, South Africa

Reviewer #1 (Public Review):

Summary:
Tuberculous meningitis (TBM) is one of the most severe forms of extrapulmonary TB. TBM is especially prevalent in people who are immunocompromised (e.g. HIV-positive). Delays in diagnosis and treatment could lead to severe disease or mortality. In this study, the authors performed the largest-ever host whole blood transcriptomics analysis on a cohort of 606 Vietnamese participants. The results indicated that TBM mortality is associated with increased neutrophil activation and decreased T and B cell activation pathways. Furthermore, increased angiogenesis was also observed in HIV-positive patients who died from TBM, whereas activated TNF signaling and down-regulated extracellular matrix organisation were seen in the HIV-negative group. Despite similarities in transcriptional profiles between PTB and TBM compared to healthy controls, inflammatory genes were more active in HIV-positive TBM. Finally, 4 hub genes (MCEMP1, NELL2, ZNF354C, and CD4) were identified as strong predictors of death from TBM.

Strengths:
This is a really impressive piece of work, both in terms of the size of the cohort which took years of effort to recruit, sample, and analyse, and also the meticulous bioinformatics performed. The biggest advantage of obtaining a whole blood signature is that it allows an easier translational development into a test that can be used in the clinical with a minimally invasive sample. Furthermore, the data from this study has also revealed important insights into the mechanisms associated with mortality and the differences in pathogenesis between HIV-positive and HIV-negative patients, which would have diagnostic and therapeutic implications.

Weaknesses:
The data on blood neutrophil count is really intriguing and seems to provide a very powerful yet easy-to-measure method to differentiate survival vs. death in TBM patients. It would be quite useful in this case to perform predictive analysis to see if neutrophil count alone, or in combination with gene signature, can predict (or better predict) mortality, as it would be far easier for clinical implementation than the RNA-based method. Moreover, genes associated with increased neutrophil activation and decreased T cell activation both have significantly higher enrichment scores in TBM (Figure 9) and in morality (Figure 8). While I understand the basis of selecting hub genes in the significant modules, they often do not represent these biological pathways (at least not directly associated in most cases). If genes were selected based on these biologically relevant pathways, would they have better predictive values?

Reviewer #2 (Public Review):

Summary:
This manuscript describes the analysis of blood transcriptomic data from patients with TB meningitis, with and without HIV infection, with some comparison to those of patients with pulmonary tuberculosis and healthy volunteers. The objectives were to describe the comparative biological differences represented by the blood transcriptome in TBM associated with HIV co-infection or survival/mortality outcomes and to identify a blood transcriptional signature to predict these outcomes. The authors report an association between mortality and increased levels of acute inflammation and neutrophil activation, but decreased levels of adaptive immunity and T/B cell activation. They propose a 4-gene prognostic signature to predict mortality.

Strengths:
-Biological evaluations of blood transcriptomes in TB meningitis and their relationship to outcomes have not been extensively reported previously.
-The size of the data set is a major strength and is likely to be used extensively for secondary analyses in this field of research.

Weaknesses:
The bioinformatic analysis is limited to a descriptive narrative of gene-level functional annotations curated in GO and KEGG databases. This analysis can not be used to make causal inferences. In addition, the functional annotations are limited to 'high-level' terms that fail to define biology very precisely. At best, they require independent validation for a given context. As a result, the conclusions are not adequately substantiated. The identification of a prognostic blood transcriptomic signature uses an unusual discovery approach that leverages weighted gene network analysis that underpins the bioinformatic analyses. However, the main problem is that authors seem to use all the data for discovery and do not undertake any true external validation of their gene signature. As a result, the proposed gene signature is likely to be overfitted to these data and not generalisable. Even this does not achieve significantly better prognostic discrimination than the existing clinical scoring.

Author Response

eLife assessment

In this valuable study, the authors investigate the transcriptional landscape of tuberculous meningitis, revealing key molecular differences contributed by HIV co-infection. Whilst some of the evidence presented is compelling, the bioinformatics analysis is limited to a descriptive narrative of gene-level functional annotations, which are somewhat basic and fail to define aspects of biology very precisely. Whilst the work will be of broad interest to the infectious disease community, validation of the data is critical for future utility.

Response: We appreciate eLife’s positive assessment, although we challenge the conclusion that we ‘fail to define aspects of biology very precisely’. Our stated objective was to use bioinformatics tools to identify the biological pathways and hub genes associated with TBM pathogenesis and the eLife assessment affirms we have investigated ‘the transcriptional landscape of tuberculous meningitis’. To more precisely define aspects of the biology will require another study with different design and methods. Therefore the criticism seems unnecessarily harsh given the limitations of our stated objective.

Public Reviews:

Reviewer #1 (Public Review):

Summary:

Tuberculous meningitis (TBM) is one of the most severe forms of extrapulmonary TB. TBM is especially prevalent in people who are immunocompromised (e.g. HIV-positive). Delays in diagnosis and treatment could lead to severe disease or mortality. In this study, the authors performed the largest-ever host whole blood transcriptomics analysis on a cohort of 606 Vietnamese participants. The results indicated that TBM mortality is associated with increased neutrophil activation and decreased T and B cell activation pathways. Furthermore, increased angiogenesis was also observed in HIV-positive patients who died from TBM, whereas activated TNF signaling and down-regulated extracellular matrix organisation were seen in the HIV-negative group. Despite similarities in transcriptional profiles between PTB and TBM compared to healthy controls, inflammatory genes were more active in HIV-positive TBM. Finally, 4 hub genes (MCEMP1, NELL2, ZNF354C, and CD4) were identified as strong predictors of death from TBM.

Strengths:

This is a really impressive piece of work, both in terms of the size of the cohort which took years of effort to recruit, sample, and analyse, and also the meticulous bioinformatics performed. The biggest advantage of obtaining a whole blood signature is that it allows an easier translational development into a test that can be used in the clinical with a minimally invasive sample. Furthermore, the data from this study has also revealed important insights into the mechanisms associated with mortality and the differences in pathogenesis between HIV-positive and HIV-negative patients, which would have diagnostic and therapeutic implications.

Weaknesses:

The data on blood neutrophil count is really intriguing and seems to provide a very powerful yet easy-to-measure method to differentiate survival vs. death in TBM patients. It would be quite useful in this case to perform predictive analysis to see if neutrophil count alone, or in combination with gene signature, can predict (or better predict) mortality, as it would be far easier for clinical implementation than the RNA-based method. Moreover, genes associated with increased neutrophil activation and decreased T cell activation both have significantly higher enrichment scores in TBM (Figure 9) and in morality (Figure 8). While I understand the basis of selecting hub genes in the significant modules, they often do not represent these biological pathways (at least not directly associated in most cases). If genes were selected based on these biologically relevant pathways, would they have better predictive values?

Response: Blood neutrophil count was not found to be a predictor for TBM mortality in our previous studies. We agree it could be useful to perform predictive analysis with neutrophil count as suggested by reviewer. Regarding hub genes versus genes representative of the biological pathways, we cannot know which have better predictive values without performing variable selection for the sets of all genes including both hub genes and pathway representative genes, additional analysis which we will undertake.

Reviewer #2 (Public Review):

Summary:

This manuscript describes the analysis of blood transcriptomic data from patients with TB meningitis, with and without HIV infection, with some comparison to those of patients with pulmonary tuberculosis and healthy volunteers. The objectives were to describe the comparative biological differences represented by the blood transcriptome in TBM associated with HIV co-infection or survival/mortality outcomes and to identify a blood transcriptional signature to predict these outcomes. The authors report an association between mortality and increased levels of acute inflammation and neutrophil activation, but decreased levels of adaptive immunity and T/B cell activation. They propose a 4-gene prognostic signature to predict mortality.

Strengths:

-Biological evaluations of blood transcriptomes in TB meningitis and their relationship to outcomes have not been extensively reported previously.

-The size of the data set is a major strength and is likely to be used extensively for secondary analyses in this field of research.

Weaknesses:

The bioinformatic analysis is limited to a descriptive narrative of gene-level functional annotations curated in GO and KEGG databases. This analysis can not be used to make causal inferences. In addition, the functional annotations are limited to 'high-level' terms that fail to define biology very precisely. At best, they require independent validation for a given context. As a result, the conclusions are not adequately substantiated. The identification of a prognostic blood transcriptomic signature uses an unusual discovery approach that leverages weighted gene network analysis that underpins the bioinformatic analyses. However, the main problem is that authors seem to use all the data for discovery and do not undertake any true external validation of their gene signature. As a result, the proposed gene signature is likely to be overfitted to these data and not generalisable. Even this does not achieve significantly better prognostic discrimination than the existing clinical scoring.

Response: As explained in response to the eLife assessment, our objective was to use bioinformatics tools to identify the biological pathways and hub genes associated with TBM pathogenesis. We agree that ‘This analysis can not be used to make causal inferences’: that would require different study design and approaches. The proposed gene signature has higher AUC values than the existing clinical model. We agree that validation of the gene signature in an independent sample set will be a crucial next step.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation