Peer review process
Revised: This Reviewed Preprint has been revised by the authors in response to the previous round of peer review; the eLife assessment and the public reviews have been updated where necessary by the editors and peer reviewers.
Read more about eLife’s peer review process.Editors
- Reviewing EditorMarcel Goldschen-OhmUniversity of Texas at Austin, Austin, United States of America
- Senior EditorKenton SwartzNational Institute of Neurological Disorders and Stroke, Bethesda, United States of America
Reviewer #1 (Public Review):
Summary:
The authors want to understand fundamental steps in ligand binding to muscle nicotinic receptors using computational methods. Overall, although the work provides new information and support for existing models of ligand activation of this receptor type, some limitations in the methods and approach mean that the findings are not as conclusive as hoped.
Strengths:
The strengths include the number of ligands tried, and the comparison to the existing mature analysis of receptor function from the senior author's lab.
Weaknesses:
The weakness are the brevity of the simulations, the concomitant lack of scope of the simulations, the lack of depth in the analysis and the incomplete relation to other relevant work. The free energy methods use seem to lack accuracy - they are only correct for 2 out of 4 ligands.
Reviewer #2 (Public Review):
Summary:
The aim of this manuscript is to use molecular dynamics (MD) simulations to describe the conformational changes of the neurotransmitter binding site of a nicotinic receptor. The study uses a simplified model including the alpha-delta subunit interface of the extracellular domain of the channel and describes the binding of four agonists to observe conformational changes during the weak to strong affinity transition.
Strength:
The 200 ns-long simulations of this model suggest that the agonist rotates about its centre in a 'flip' motion, while loop C 'flops' to restructure the site. The changes appear to reproduced across simulations and different ligands and are thus a strong point of the study.
Weaknesses:
After carrying out all-atom molecular dynamics, the authors revert to a model of binding using continuum Poisson-Boltzmann, surface area and vibrational entropy. The motivations for and limitations associated with this approximate model for the thermodynamics of binding, rather than using modern atomistic MD free energy methods (that would fully incorporate configurational sampling of the protein, ligand and solvent) could be provided. Despite this, the authors report correlation between their free energy estimates and those inferred from experiment. This did, however, reveal shortcomings for two of the agonists. The authors mention their trouble getting correlation to experiment for Ebt and Ebx and refer to up to 130% errors in free energy. But this is far worse than a simple proportional error, because -24 Vs -10 kcal/mol is a massive overestimation of free energy, as would be evident if it the authors were to instead to express results in terms of KD values (which would have error exceeding a billion fold). The MD analysis could be improved with better measures of convergence, as well as more careful discussion of free energy maps as function of identified principal components, as described below. Overall, however, the study has provided useful observations and interpretations of agonist binding that will help understand pentameric ligand-gated ion channel activation.
Main points:
Regarding the choice of model, some further justification of the reduced 2 subunit ECD-only model could be given. On page 5 the authors argue that, because binding free energies are independent of energy changes outside the binding pocket, they could remove the TMD and study only an ECD subunit dimer. While the assumption of distant interactions being small seems somewhat reasonable, provided conformational changes are limited and localised, how do we know the packing of TMD onto the ECD does not alter the ability of the alpha-delta interface to rearrange during weak or strong binding? They further write that "fluctuations observed at the base of the ECD were anticipated because the TMD that offers stability here was absent.". As the TMD-ECD interface is the "gating interface" that is reshaped by agonist binding, surely the TMD-ECD interface structure must affect binding. It seems a little dangerous to completely separate the agonist binding and gating infrastructure, based on some assumption of independence. Given the model was only the alpha and delta subunits and not the pentamer with TMD, I am surprised such a model was stable without some heavy restraints. The authors state that "as a further control we carried out MD simulation of a pentamer docked with ACh and found similar structural changes at the binding pocket compared to the dimer." Is this sufficient proof of the accuracy of the simplified model? How similar was the model itself with and without agonist in terms of overall RMSD and RMSD for the subunit interface and the agonist binding site, as well as the free energy of binding to each model to compare?
Although the authors repeatedly state that they have good convergence with their MD, I believe the analysis could be improved to convince us. On page 8 the authors write that the RMSD of the system converged in under 200 ns of MD. However, I note that the graph is of the entire ECD dimer, not a measure for the local binding site region. An additional RMSD of local binding site would be much more telling. You could have a structural isomerisation in the site and not even notice it in the existing graph. On page 9 the authors write that the RMSF in Fig.S2 showed instability mainly in loops C and F around the pocket. Given this flexibility at the alpha-delta interface, this is why collecting those regions into one group for the calculation of RMSD convergence analysis would have been useful. They then state "the final MD configuration (with CCh) was well-aligned with the CCh-bound cryo-EM desensitized structure (7QL6)... further demonstrating that the simulation had converged." That may suggest a change occurred that is in common with the global minimum seen in cryo EM, which is good, but does not prove the MD has "converged". I would also rename Fig.S3 accordingly.
The authors draw conclusions about the dominant states and pathways from their PCA component free energy projections that need clarification. It is important first to show data to demonstrate that the two PCA components chosen were dominant and accounted for most of the variance. Then when mapping free energy as a function of those two PCA components, to prove that those maps have sufficient convergence to be able to interpret them. Moreover, that if the free energies themselves cannot be used to measure state stability (as seems to be the case), that the limitations are carefully explained. First, was PCA done on all MD trajectories combined to find a common PC1 & PC2, or were they done separately on each simulation? If so, how similar are they? The authors write "the first two principal components (PC-1 and PC-2) that capture the most pronounced C. displacements". How much of the total variance did these two components capture? The authors write the changes mostly concern loop C and loop F, but which data proves this? e.g. A plot of PC1 and PC2 over residue number might help?
The authors map the -kTln rho as a free energy for each simulation as function of PC1 & PC2. It is important to reveal how well that PC1-2 space was sampled, and how those maps converged over time. The shapes of the maps and the relative depths of the wells look very different for each agonist. If the maps were sampled well and converged, the free energies themselves would tell us the stabilities of each state. Instead, the authors do not even mention this and instead talk about "variance" being the indicator of stability, stating that m3 is most stable in all cases. While I can believe 200ns could not converge a PC1-2 map and that meaningful delta G values might not be obtained from them, the issue of lack of sampling must be dealt with. On page 12 they write "Although the bottom of the well for 3 energy minima from PCA represent the most stable overall conformation of the protein, they do not convey direct information regarding agonist stability or orientation". The reasons why not must be explained; as they should do just that if the two order parameters PC1 and PC2 captured the slowest degrees of freedom for binding and sampling was sufficient. The authors write that "For all agonists and trajectories, m3 had the least variance (was most stable), again supporting convergence by 200 ns." Again the issue of actual free energy values in the maps needs to be dealt with. The probabilities expressed as -kTln rho in kcal/mol might suggest that m2 is the most stable. Instead, the authors base stability only on variance (I guess breadth of the well?), where m3 may be more localised in the chosen PC space, despite apparently having less preference during the MD (not the lowest free energy in the maps).
The motivations and justifications for use of approximate PBSA energetics instead of atomistic MD free energies should be dealt with in the manuscript, with limitations more clearly discussed. Rather than using modern all-atom MD free energy methods for relative or absolute binding free energies, the author select clusters from their identified states and do Poisson-Boltzmann estimates (electrostatic, vdW, surface area, vibrational entropy). I do believe the following sentence does not begin to deal with the limitations in that method: "there are limitations with regard to MM-PBSA accurately predicting absolute binding free energies (Genheden & Ryde, 2015; Hou et al., 2011) that depends on parameterization of the ligand (Oostenbrink et al., 2004)." What are the assumptions and limitations in taking a continuum electrostatics (presumably with parameters for dielectric constants and their assignments to regions after discarding solvent), surface area (with its assumptions and limitations) and of course assuming vibration of a normal mode can capture entropy. On page 30, regarding their vibrational entropy estimate, they write that the "entropy term provides insights into the disorder within the system, as well as how this disorder changes during the binding process". It is important that the extent of disorder captured by the vibrational estimate be discussed, as it is not obvious that it has captured entropy involving multiple minima on the system's true 3N-dimensional energy surface, and especially the contribution from solvent disorder in bound Vs dissociated states.
As discussed above, errors in the free energy estimates need to be more faithfully represented, as fractional errors are not meaningful. On page 21 the authors write "The match improved when free energy ratios rather than absolute values were compared." But a ratio of free energies is not a typical or expected measure of error in delta G. They also write "For ACh and CCh, there is good agreement between.Gm1 and GLA and between.Gm3 and GHA. For these agonists, in silico values overestimated experimental ones only by ~8% and ~25%. The agreement was not as good for the other 2 agonists, as calculated values overestimated experimental ones by ~45%(Ebt) and ~130% (Ebt). However, the fractional overestimation was approximately the same for GLA and GHA." See above comment on how this may misrepresent the error. On page 21 they write, in relation to their large fractional errors, that they "do not know the origin of this factor but speculate that it could be caused by errors in ligand parameterization". But the estimates from the PBSA approach are, by design, only approximate. Both errors in parameterisation (and their likely origin) and the approximate model used, need discussion.
Reviewer #3 (Public Review):
Summary:
The authors use docking and molecular dynamics (MD) simulations to investigate transient conformations that are otherwise difficult to resolve experimentally. The docking and simulations suggest an interesting series of events whereby agonists initially bind to the low affinity site and then flip 180 degrees as the site contracts to its high affinity conformation. This work will be of interest to the ion channel community and to biophysical studies of pentameric ligand-gated channels.
Strengths:
I find the premise for the simulations to be good, starting with an antagonist bound structure as an estimate of the low affinity binding site conformation, then docking agonists into the site and using MD to allow the site to relax to a higher affinity conformation that is similar to structures in complex with agonists. The predictions are interesting and provide a view into what a transient conformation that is difficult to observe experimentally might be like.
Weaknesses:
A weakness is that the relevance of the initial docked low affinity orientations depend solely on in silco results, for which simulated vs experimental binding energies deviate substantially for two of the four ligands tested. This raises some doubt as to the validity of the simulations. I acknowledge that the calculated binding energies for two of the ligands were closer to experiment, and simulated efficiencies were a good representation of experimental measures, which gives some support to the relevance of the in silico observations. Regardless, some of the reviewers comments regarding the simulation methodology were not seriously addressed.
Reviewer #4 (Public Review):
Summary:
In their revised manuscript "Conformational dynamics of a nicotinic receptor neurotransmitter binding site," Singh and colleagues present molecular docking and dynamics simulations to explore the initial conformational changes associated with agonist binding in the muscle nicotinic acetylcholine receptor, in context with the extensive experimental literature on this system. Their central findings are of a consistently preferred pose for agonists upon initial association with a resting channel, followed by a dramatic rotation of the ligand and contraction of a critical loop over the binding site. Principal component analysis also suggests the formation of an intermediate complex, not yet captured in structural studies. Binding free energy estimates are consistent with the evolution of a higher-affinity complex following agonist binding, with a ligand efficiency notably similar to experimental values. Snapshot comparisons provide a structural rationale for these changes on the basis of pocket volume, hydration, and rearrangement of key residues at the subunit interface.
Strengths:
Docking results are clearly presented and remarkably consistent. Simulations are produced in triplicate with each of four different agonists, providing an informative basis for internal validation. They identify an intriguing transition in ligand pose, not well documented in experimental structures, and potentially applicable to mechanistic or even pharmacological modeling of this and related receptor systems. The paper seems a notable example of integrating quantitative structure-function analysis with systematic computational modeling and simulations, likely applicable to the wider journal audience.
Weaknesses:
The response to initial review is somewhat disappointing, declining in some places to implement suggested clarifications, and propagating apparent errors in at least one table (Fig 2-source data 1). Some legends (e.g. Fig 2-supplement 4, Fig 3, Fig 4) and figure shadings (e.g. Fig 2-supplement 2, Fig 6-supplement 2) remain unclear. Apparent convergence of agonist-docked simulations towards a desensitized state (l 184) is difficult to interpret in absence of comparative values with other states, systems, etc. In more general concerns, aside from the limited timescales (200 ns) that do not capture global rearrangements, it is not obvious that landscapes constructed on two principal components to identify endpoint and intermediate states (Fig 3) are highly robust or reproducible, nor whether they relate consistently to experimental structures.