Key determinants of the dual clamp/activator function of Complexin

  1. Center for Integrative Physiology and Molecular Medicine, School of Medicine, University of Saarland, 66424 Homburg/Saar, Germany

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a response from the authors (if available).

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Henrique von Gersdorff
    Oregon Health and Science University, Portland, United States of America
  • Senior Editor
    Kenton Swartz
    National Institute of Neurological Disorders and Stroke, Bethesda, United States of America

Reviewer #1 (Public Review):

Summary:

Using chromaffin cells as powerful model systems for studying secretion, the authors study the regulatory role of complexin in secretion. Complexin is still enigmatic in its regulatory role, as it both provides inhibitory and facilitatory functions in release. The authors perform an extensive structure-function analysis of both the C- and N-terminal regions of complexin. There are several interesting findings that significantly advance our understanding of cpx/SNARe interactions in regulating release. C-terminal amphipathic helix interferes with SNARE complex assembly and thus clamps fusion. There are acidic residues in the C-term that may be seen as putative interaction partners for Synaptotagmin. The N-terminus of Complexin promoting role may be associated with an interaction with Syt1. In particular, the putative interaction with Syt1 is of high interest and supported by quite strong functional and biochemical evidence. The experimental approaches are state-of-the-art, and the results are of the highest quality and convincing throughout. They are adequately and intelligently discussed in the rich context of the standing literature. Whilst there are some concerns about whether the facilitatory actions of complexion have to be tightly linked to Syt1 interactions, the proposed model will significantly advance the field by providing new directions in future research.

I have only minor comments related to the interpretation of the data:

Fig 5 While the data very nicely show that CPX and Syt1 have interdependent interactions in the chromaffin neurons, this seems to be not the case in neurons, where the loss of complexins and synaptotagmins have additive effects, suggesting independent mechanisms (eg Xue et al., 2010). This would be a good opportunity to discuss some possible differences between secretion in endocrine cells vs neurons.

Fig 8 Shows an apparent shift in Ca sensitivity in N-terminal mutants suggesting a modification of Ca sensitivity of Syt1. Could there be also an alternative mechanism, that explains this phenotype which is based on a role of the n-term lowering the energy barrier for fusion, that in turn shifts corresponding fusion rates to take place at lower Ca saturation levels?

Reviewer #2 (Public Review):

Summary:

Complexin (Cplx) is expressed at nearly all chemical synapses. Mammalian Cplx comes in four different paralogs which are differentially expressed in different neuron types, either selectively or in combination with one or two other Cplx isoforms. Cplx binds with high affinity to assembled SNARE complexes and promotes AP-evoked release by increasing vesicle fusogenicity. Cplx is assumed to preclude premature SV fusion by preventing full SNARE assembly, thereby arresting subsequent SNARE-driven fusion ("fusion-clamp" theory). The protein has multiple domains, the functions of which are controversially discussed. Cplx's function has been studied in a variety of model organisms including mice, flies, worms, and fish with seemingly conflicting results which led to partly contradicting conclusions.

Makee et al. study the function of mammalian Cplx2 by making use of chromaffin cells derived from Cplx2 ko mice as a system to overexpress and functionally characterize mutant Cplx2 forms. This work is an important extension of previous studies of the same lab using similar techniques. The main conclusion of the present study are:

The hydrophobic character of the amphipathic helix in Cplx's C-terminal domain is essential for inhibiting premature vesicle fusion at a [Ca2+]i of several hundreds of nM (pre-flash [Ca2+]i). The Cplx-mediated inhibition of fusion under these conditions does not rely on the expression of either Syt1 or Syt7.

Slow-down of exocytosis by N-terminally truncated Cplx mutants in response to a [Ca2+]i of several µM (peak flash [Ca2+]i) occurs regardless of the presence or absence of Syt7 demonstrating that Cplx2 does not act as a switch favoring preferential assembly of the release machinery with Syt1,2 rather than the "slow" sensor Syt7.

Cplx's N-terminal domain is required for the Cplx2-mediated increase in the speed of exocytosis and faster onset of exocytosis which likely reflect an increased apparent Ca2+ sensitivity and faster Ca2+ binding of the release machinery.

Strengths:

The authors perform systematic truncation/mutational analyses of Cplx2 by making use of chromaffin cells derived from Cplx2 ko mice. They analyze the impact of single and combined deficiencies for Cplx2 and Syt1 to establish interactions of both proteins.

State-of-the-art methods are employed: Vesicle exocytosis is assayed directly and with high resolution using capacitance measurements. Intracellular [Ca2+] is controlled by loading via the patch-pipette and by UV-light-induced flash-photolysis of caged [Ca2+]. The achieved [Ca2+ ] is measured with Ca2+ -sensitive dyes.

The data is of high quality and the results are convincing.

Weaknesses:

The authors provide a "chromaffin cell-centric" view of the function of mammalian Cplx in vesicle fusion. With the exception of mammalian retinal ribbon synapses (and some earlier RNAi knockdown studies that had off-target effects), there is very little evidence for a "fusion-clamp"-like function of Cplxs in mammalian synapses. At conventional mammalian synapses, genetic loss of Cplx (i.e. KO) consistently decreases AP-evoked release, and generally either also decreases spontaneous release rates or does not affect spontaneous release, which is inconsistent with a "fusion-clamp" theory. This is in stark contrast to invertebrate (D. m. and C. e.) synapses where genetic Cplx loss is generally associated with strong upregulation of spontaneous release, providing support for Cplx acting as a "fusion-clamp".

The authors use a Semliki Forest virus-based approach to express mutant proteins in chromaffin cells. This strategy leads to a strong protein overexpression (~7-8fold, Figure 3 Suppl. 1). Therefore, experimental findings under these conditions may not necessarily be identical to findings with normal protein expression levels.

Measurements of delta Cm in response to Ca2+ uncaging by ramping [Ca2+ ] from resting levels up to several µM over a time period of several seconds were used to establish changes in the release rate vs [Ca2+ ]i relationship. It is not clear to this reviewer if and how concurrently occurring vesicle endocytosis together with a possibly Ca2+-dependent kinetics of endocytosis may affect these measurements.

It should be pointed out that an altered "apparent Ca2+ affinity" or "apparent Ca2+ binding rate" does not necessarily reflect changes at Ca2+-binding sites (e.g. Syt1).

There are alternative models on how Cplx may "clamp" vesicle fusion (see Bera et al. 2022, eLife) or how Cplx may achieve its regulation of transmitter release without mechanistically "clamping" fusion (Neher 2010, Neuron). Since the data presented here cannot rule out such alternative models (in this reviewer's opinion), the authors may want to mention and briefly discuss such alternative models.

Some parts of the Discussion are quite general and not specifically related to the results of the present study. The authors may want to consider shortening those parts.

Last but not least, the presentation of the results could be improved to make the data more accessible to non-specialists, this concerns providing necessary background information, choice of colors, and labeling of diagrams.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation