Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.
Read more about eLife’s peer review process.Editors
- Reviewing EditorPatrick HuVanderbilt University Medical Center, Nashville, United States of America
- Senior EditorTony YuenIcahn School of Medicine at Mount Sinai, New York, United States of America
Reviewer #1 (Public Review):
Summary:
As the scientific community identifies increasing numbers of genetic variants that cause rare human diseases, a challenge is how the field can most quickly identify pharmacological interventions to address known deficits. The authors point out that defining phenotypic outcomes required for drug screen assays is often challenging, and emphasize how invertebrate models can be used for quick ID of compounds that may address genetic deficits. A major contribution of this work is to establish a framework for potential intervention drug screening based on quantitative imaging of morphology and mobility behavior, using methods that the authors show can define subtle phenotypes in a high proportion of disease gene knockout mutants.
Overall, the work constitutes an elegant combination of previously developed high-volume imaging with highly detailed quantitative phenotyping (and some paring down to specific phenotypes) to establish proof of principle on how the combined applications can contribute to screens for compounds that may address specific genetic deficits, which can suggest both mechanism and therapy.
In brief, the authors selected 25 genes for which loss of function is implicated in human neuro-muscular disease and engineered deletions in the corresponding C. elegans homologs. The authors then imaged morphological features and behaviors prior to, during, and after blue light stimuli, quantitating features, and clustering outcomes as they elegantly developed previously (PMID 35322206; 30171234; 30201839). In doing so, phenotypes in 23/25 tested mutants could be separated enough to distinguish WT from mutant and half of those with adequate robustness to permit high-throughput screens, an outcome that supports the utility of general efforts to ID phenotypes in C. elegans disease orthologs using this approach. A detailed discussion of 4 ciliopathy gene defects, and NACLN-related channelopathy mutants reveals both expected and novel phenotypes, validating the basic approach to modeling vetted targets and underscoring that quantitative imaging approaches reiterate known biology. The authors then screened a library of nearly 750 FDA-approved drugs for the capacity to shift the unc-80 NACLN channel-disrupted phenotype closer to the wild type. Top "mover" compound move outcome in the experimental outcome space; and also reveal how "side effects" can be evaluated to prioritize compounds that confer the fewest changes of other parameters away from the center.
Strengths:
Although the imaging and data analysis approaches have been reported and the screen is limited in scope and intervention exposure, it is important that the authors strongly combine individual approach elements to demonstrate how quantitative imaging phenotypes can be integrated with C. elegans genetics to accelerate the identification of potential modulators of disease (easily extendable to other goals). Generation of deletion alleles and documentation of their associated phenotypes (available in supplemental data) provide potentially useful reagents/data to the field. The capacity to identify "over-shooting" of compound applications with suggestions for scale back and to sort efficacious interventions to minimize other changes to behavioral and physical profiles is a strong contribution.
Weaknesses:
The work does not have major weaknesses, although it may be possible to expand the discussion to increase utility in the field:
- Increased discussion of the challenges and limitations of the approach may enhance successful adaptation application in the field.
--It is quite possible that morphological and behavioral phenotypes have nothing to do with disease mechanisms and rather reflect secondary outcomes, such that positive hits will address "off-target" consequences.
--The deletion approach is adequately justified in the text, but the authors may make the point somewhere that screening target outcomes might be enhanced by the inclusion of engineered alleles that match the human disease condition. Their work on sod-1 alleles (PMID 35322206) might be noted in this discussion.
--Drug testing here involved a strikingly brief exposure to a compound, which holds implications for how a given drug might engage in adult animals. The authors might comment more extensively on extended treatments that include earlier life or more extended targeting. The assumption is that administering different exposure periods and durations, but if the authors are aware as to whether there are challenges associated with more prolonged applications, larger scale etc. it would be useful to note them.
More justification of the shift to only a few target parameters for judging compound effectiveness.
-In the screen in Figure 4D and text around 313, 3 selected core features of the unc-80 mutant (fraction that blue-light pause, speed, and curvature) were used to avoid the high replicate requirements to identify subtle phenotypes. Although this strategy was successful as reported in Figure 5, the pared-down approach seems a bit at odds with the emphasis on the range of features that can be compared mutant/wt with the author's powerful image analysis. Adding details about the reduced statistical power upon multiple comparisons, with a concrete example calculated, might help interested scientists better assess how to apply this tool in experimental design.More development of the side-effect concept. The side effects analysis is interesting and potentially powerful. Prioritization of an intervention because of minimal perturbation of other phenotypes might be better documented and discussed a bit further; how reliably does the metric of low side effects correlate with drug effectiveness?
Reviewer #2 (Public Review):
Summary and strengths:
O'Brien et al. present a compelling strategy to both understand rare disease that could have a neuronal focus and discover drugs for repurposing that can affect rare disease phenotypes. Using C. elegans, they optimize the Brown lab worm tracker and Tierpsy analysis platform to look at the movement behaviors of 25 knockout strains. These gene knockouts were chosen based on a process to identify human orthologs that could underlie rare diseases. I found the manuscript interesting and a powerful approach to making genotype-phenotype connections using C. elegans. Given the rate at which rare Mendelian diseases are found and candidate genes suggested, human geneticists need to consider orthologous approaches to understand the disease and seek treatments on a rapid time scale. This approach is one such way. Overall, I have a few minor suggestions and some specific edits.
Weaknesses:
(1) Throughout the text on figures, labels are nearly impossible to read. I had to zoom into the PDF to determine what the figure was showing. Please make text in all figures a minimum of 10-point font. Similarly, the Figure 2D point type is impossible to read. Points should be larger in all figures. Gene names should be in italics in all figures, following C. elegans convention.
(2) I have a strong bias against the second point in Figure 1A. Sequencing of trios, cohorts, or individuals NEVER identifies causal genes in the disease. This technique proposes a candidate gene. Future experiments (oftentimes in model organisms) are required to make those connections to causality. Please edit this figure and parts of the text.
(3) How were the high-confidence orthologs filtered from 767 to 543 (lines 128-131)? Also, the choice of the final list of 25 genes is not well justified. Please expand more about how these choices were made.
(4) Figures 3 and 4, why show all 8289 features? It might be easier to understand and read if only the 256 Tierpsy features were plotted in the heat maps.
(5) The unc-80 mutant screen is clever. In the feature space, it is likely better to focus on the 256 less-redundant Tierpsy features instead of just a number of features. It is unclear to me how many of these features are correlated and not providing more information. In other words, the "worsening" of less-redundant features is far more of a concern than the "worsening" of 1000 correlated features.
Reviewer #3 (Public Review):
In this study, O'Brien et al. address the need for scalable and cost-effective approaches to finding lead compounds for the treatment of the growing number of Mendelian diseases. They used state-of-the-art phenotypic screening based on an established high-dimensional phenotypic analysis pipeline in the nematode C. elegans.
First, a panel of 25 C. elegans models was created by generating CRISPR/Cas9 knock-out lines for conserved human disease genes. These mutant strains underwent behavioral analysis using the group's published methodology. Clustering analysis revealed common features for genes likely operating in similar genetic pathways or biological functions. The study also presents results from a more focused examination of ciliopathy disease models.
Subsequently, the study focuses on the NALCN channel gene family, comparing the phenotypes of mutants of nca-1, unc-77, and unc-80. This initial characterization identifies three behavioral parameters that exhibit significant differences from the wild type and could serve as indicators for pharmacological modulation.
As a proof-of-concept, O'Brien et al. present a drug repurposing screen using an FDA-approved compound library, identifying two compounds capable of rescuing the behavioral phenotype in a model with UNC80 deficiency. The relatively short time and low cost associated with creating and phenotyping these strains suggest that high-throughput worm tracking could serve as a scalable approach for drug repurposing, addressing the multitude of Mendelian diseases. Interestingly, by measuring a wide range of behavioural parameters, this strategy also simultaneously reveals deleterious side effects of tested drugs that may confound the analysis.
Considering the wealth of data generated in this study regarding important human disease genes, it is regrettable that the data is not actually made accessible. This diminishes the study's utility. It would have a far greater impact if an accessible and user-friendly online interface were established to facilitate data querying and feature extraction for specific mutants. This would empower researchers to compare their findings with the extensive dataset created here. Otherwise, one is left with a very limited set of exploitable data.
Another technical limitation of the study is the use of single alleles. Large deletion alleles were generated by CRISPR/Cas9 gene editing. At first glance, this seems like a good idea because it limits the risk that background mutations, present in chemically-generated alleles, will affect behavioral parameters. However, these large deletions can also remove non-coding RNAs or other regulatory genetic elements, as found, for example, in introns. Therefore, it would be prudent to validate the behavioral effects by testing additional loss-of-function alleles produced through early stop codons or targeted deletion of key functional domains.