Peer review process
Revised: This Reviewed Preprint has been revised by the authors in response to the previous round of peer review; the eLife assessment and the public reviews have been updated where necessary by the editors and peer reviewers.
Read more about eLife’s peer review process.Editors
- Reviewing EditorAhmad KhalilBoston University, Boston, United States of America
- Senior EditorYamini DalalNational Cancer Institute, Bethesda, United States of America
Reviewer #1 (Public review):
Batra, Cabrera and Spence et al. present a model which integrates histone posttranslational modification (PTM) data across cell models to predict gene expression with the goal of using this model to better understand epigenetic editing. This gene expression prediction model approach is useful if a) it predicts gene expression in specific cell lines b) it predicts expression values rather than a rank or bin, c) if it helps us to better understand the biology of gene expression or d) it helps us to understand epigenome editing activity. Problematically for points a) and b) it is easier to directly measure gene expression than to measure multiple PTMs and so the real usefulness of this approach mostly relates to c) and d).
Other approaches have been published that use histone PTM to predict expression (e.g. PMID 27587684, 36588793). Is this model better in some way? No comparisons are made, although a claim is made that direct comparisons are difficult. I appreciate that the authors have not used the histone PTM data to predict gene expression levels of an "average cell" but rather that they are predicting expression within specific cell types or for unseen cell types. Approaches that predict expression levels are much more useful, whereas some previous approaches have only predicted expressed or not expressed or a rank order or bin-based ranking. The paper does not seem to have substantial novel insights into understanding the biology of gene expression.
The approach of using this model to predict epigenetic editor activity on transcription is interesting and to my knowledge novel although only examined in the context of a p300 editor. As the author point out the interpretation of the epigenetic editing data is convoluted by things like sgRNA activity scoring and to fully understand the results likely would require histone PTM profiling and maybe dCas9 ChIP-seq for each sgRNA which would be a substantial amount of work.
Furthermore from the model evaluation of H3K9me3 is seems the model is performing modestly for other forms of epigenetic or transcriptional editing- e.g. we know for the best studied transcriptional editor which is CRISPRi (dCas9-KRAB) that recruitment to a locus is associated with robust gene repression across the genome and is associated with H3K9me3 deposition by recruitment of KAP1/HP1/SETDB1 (PMID: 35688146, 31980609, 27980086, 26501517).
One concern overall with this approach is that dCas9-p300 has been observed to induce sgRNA independent off target H3K27Ac (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8349887/ see Figure S5D) which could convolute interpretation of this type of experiment for the model.
Comments on revisions: This resubmission adds a comparison to existing gene prediction methods, but add no new confirmation experiments with predicting epigenome editing efficiency and had only one minor text edit.
Reviewer #2 (Public review):
Summary:
The authors build a gene expression model based on histone post-translational modifications, and find that H3K27ac is correlated with gene expression. They compare to other gene prediction methods such as DeepChrome. They proceed to perturb H3K27ac at 13 gene promoters in two cell types, and measure gene expression changes to test their model.
Strengths:
The combination of multiple methods to model expression, along with utilizing 6 histone datasets in 13 cell types allowed the authors to build a model that correlates between 0.7-0.79 with gene expression.
They compare three cells types to other prediction models, and this figure should be included in the main figures.
They use dCas9-p300 fusions to perturb H3K27ac and monitor gene expression to test their model. Ranked correlations of the HEK293 data showed some support for the predictions after perturbation of H3K27ac.
Weaknesses:
The authors state in the latest submission that the primary use case of this work is related to predicting epigenome editing outcomes, not predicting gene expression from chromatin. However the first four figures all relate to gene expression prediction. The only main figure that shows epigenome editing prediction is panel 6E. If this authors wish to highlight the use case of this work they should redo figures, including moving panels from current supplemental figures to show this.
The perturbation of 5 genes in K562 with perturb-seq data shows a modest correlation of ~0.5 and is still only shown in supplemental figures, which is odd as this is the true test case of their model in my opinion. The authors are then left to speculate the reasons why the outcome of epigenome editing doesn't fit their predictions, which highlights the limited value in the current version of this method.
As mentioned before, testing genes that were not expressed being most activated by dCas9-p300 weaken the correlations vs. looking at a broad range of different gene expression as the original model was trained on.
If the authors want this method to be used to predict outcomes of epigenome editing, expanding to dCas9-KRAB and other CRISPRa methods (SAM and VPR) would be useful. Those datasets are published and could be analyzed for this manuscript and show how the model holds up across cell types and epigenome editing methods.
The utility of this method as described here, to predict gRNA outcomes seems modest and limited. It is fairly trivial to test 10 or more gRNAs for a single gene to find the best one, and the authors show limited prediction and occasionally no benefit. For example, with CHD8 and CD79 the gRNA with the highest prediction had the lowest actual impact on gene expression of the gRNAs tested. For many other genes the gRNA's prediction and gene expression outcome show no correlation.