Peer review process
Revised: This Reviewed Preprint has been revised by the authors in response to the previous round of peer review; the eLife assessment and the public reviews have been updated where necessary by the editors and peer reviewers.
Read more about eLife’s peer review process.Editors
- Reviewing EditorPeter KokUniversity College London, London, United Kingdom
- Senior EditorTirin MooreStanford University, Howard Hughes Medical Institute, Stanford, United States of America
Reviewer #1 (Public Review):
Summary:
The authors define a new metric for visual displays, derived from psychophysical response times, called visual homogeneity (VH). They attempt to show that VH is explanatory of response times across multiple visual tasks. They use fMRI to find visual cortex regions with VH-correlated activity. On this basis, they declare a new visual region in human brain, area VH, whose purpose is to represent VH for the purpose of visual search and symmetry tasks.
Strengths:
The authors present carefully designed experiments, combining multiple types of visual judgments and multiple types of visual stimuli with concurrent fMRI measurements. This is a rich dataset with many possibilities for analysis and interpretation.
Weaknesses:
The datasets presented here should provide a rich basis for analysis. However, in this version of the manuscript, I believe that there are major problems with the logic underlying the authors' new theory of visual homogeneity (VH), with the specific methods they used to calculate VH, and with their interpretation of psychophysical results using these methods. These problems with the coherency of VH as a theoretical construct and metric value make it hard to interpret the fMRI results based on searchlight analysis of neural activity correlated with VH. In addition, the large regions of VH correlations identified in Experiments 1 and 2 vs. Experiments 3 and 4 are barely overlapping. This undermines the claim that VH is a universal quantity, represented in a newly discovered area of visual cortex, that underlies a wide variety of visual tasks and functions.
Maybe I have missed something, or there is some flaw in my logic. But, absent that, I think the authors should radically reconsider their theory, analyses, and interpretations, in light of detailed comments below, in order to make the best use of their extensive and valuable datasets combining behavior and fMRI. I think doing so could lead to a much more coherent and convincing paper, albeit possibly supporting less novel conclusions.
THEORY AND ANALYSIS OF VH
(1) VH is an unnecessary, complex proxy for response time and target-distractor similarity.
VH is defined as a novel visual quality, calculable for both arrays of objects (as studied in Experiments 1-3) and individual objects (as studied in Experiment 4). It is derived from a center-to-distance calculation in a perceptual space. That space in turn is derived from multi-dimensional scaling of response times for target-distractor pairs in an oddball detection task (Experiments 1 and 2) or in a same different task (Experiments 3 and 4). Proximity of objects in the space is inversely proportional to response times for arrays in which they were paired. These response times are higher for more similar objects. Hence, proximity is proportional to similarity. This is visible in Fig. 2B as the close clustering of complex, confusable animal shapes.
VH, i.e. distance-to-center, for target-present arrays is calculated as shown in Fig. 1C, based on a point on the line connecting target and distractors. The authors justify this idea with previous findings that responses to multiple stimuli are an average of responses to the constituent individual stimuli. The distance of the connecting line to the center is inversely proportional to the distance between the two stimuli in the pair, as shown in Fig. 2D. As a result, VH is inversely proportional to distance between the stimuli and thus to stimulus similarity and response times. But this just makes VH a highly derived, unnecessarily complex proxy for target-distractor similarity and response time. The original response times on which the perceptual space is based are far more simple and direct measures of similarity for predicting response times.
(2) The use of VH derived from Experiment 1 to predict response times in Experiment 2 is circular and does not validate the VH theory.
The use of VH, a response time proxy, to predict response times in other, similar tasks, using the same stimuli, is circular. In effect, response times are being used to predict response times across two similar experiments using the same stimuli. Experiment 1 and the target present condition of Experiment 2 involve the same essential task of oddball detection. The results of Experiment 1 are converted into VH values as described above, and these are used to predict response times in experiment 2 (Fig. 2F). Since VH is a derived proxy for response values in Experiment 1, this prediction is circular, and the observed correlation shows only consistency between two oddball detection tasks in two experiments using the same stimuli.
(3) The negative correlation of target-absent response times with VH as it is defined for target-absent arrays, based on distance of a single stimulus from center, is uninterpretable without understanding the effects of center-fitting. Most likely, center-fitting and the different VH metric for target-absent trials produce an inverse correlation of VH with target-distractor similarity.
The construction of the VH perceptual space also involves fitting a "center" point such that distances to center predict response times as closely as possible. The effect of this fitting process on distance-to-center values for individual objects or clusters of objects is unknowable from what is presented here. These effects would depend on the residual errors after fitting response times with the connecting line distances. The center point location and its effects on distance-to-center of single objects and object clusters are not discussed or reported here.
Yet, this uninterpretable distance-to-center of single objects is chosen as the metric for VH of target-absent displays (VHabsent). This is justified by the idea that arrays of a single stimulus will produce an average response equal to one stimulus of the same kind. But it is not logically clear why response strength to a stimulus should be a metric for homogeneity of arrays constructed from that stimulus, or even what homogeneity could mean for a single stimulus from this set. And it is not clear how this VHabsent metric based on single stimuli can be equated to the connecting line VH metric for stimulus pairs, i.e. VHpresent, or how both could be plotted on a single continuum.
It is clear, however, what *should* be correlated with difficulty and response time in the target-absent trials, and that is the complexity of the stimuli and the numerosity of similar distractors in the overall stimulus set. Complexity of the target, similarity with potential distractors, and number of such similar distractors all make ruling out distractor presence more difficult. The correlation seen in Fig. 2G must reflect these kinds of effects, with higher response times for complex animal shapes with lots of similar distractors and lower response times for simpler round shapes with fewer similar distractors.
The example points in Fig. 2G seem to bear this out, with higher response times for the deer stimulus (complex, many close distractors in the Fig. 2B perceptual space) and lower response times for the coffee cup (simple, few close distractors in the perceptual space). While the meaning of the VH scale in Fig. 2G, and its relationship to the scale in Fig. 2F, are unknown, it seems like the Fig. 2G scale has an inverse relationship to stimulus complexity, in contrast to the expected positive relationship for Fig. 2F. This is presumably what creates the observed negative correlation in Fig. 2G.
Taken together, points 1-3 suggest that VHpresent and VHabsent are complex, unnecessary, and disconnected metrics for understanding target detection response times. The standard, simple explanation should stand. Task difficulty and response time in target detection tasks, in both present and absent trials, are positively correlated with target-distractor similarity.
I think my interpretations apply to Experiments 3 and 4 as well, although I find the analysis in Fig. 4 especially hard to understand. The VH space in this case is based on Experiment 3 oddball detection in a stimulus set that included both symmetric and asymmetric objects. But the response times for a very different task in Experiment 4, a symmetric/asymmetric judgment, are plotted against the axes derived from Experiment 3 (Fig. 4F and 4G). It is not clear to me why a measure based on oddball detection that requires no use of symmetry information should be predictive of within-stimulus symmetry detection response times. If it is, that requires a theoretical explanation not provided here.
(4) Contrary to the VH theory, same/different tasks are unlikely to depend on a decision boundary in the middle of a similarity or homogeneity continuum.
The authors interpret the inverse relationship of response times with VHpresent and VHabsent, described above, as evidence for their theory. They hypothesize, in Fig. 1G, that VHpresent and VHabsent occupy a single scale, with maximum VHpresent falling at the same point as minimum VHabsent. This is not borne out by their analysis, since the VHpresent and VHabsent value scales are mainly overlapping, not only in Experiments 1 and 2 but also in Experiments 3 and 4. The authors dismiss this problem by saying that their analyses are a first pass that will require future refinement. Instead, the failure to conform to this basic part of the theory should be a red flag calling for revision of the theory.
The reason for this single scale is that the authors think of target detection as a boundary decision task, along a single scale, with a decision boundary somewhere in the middle, separating present and absent. This model makes sense for decision dimensions or spaces where there are two categories (right/left motion; cats vs. dogs), separated by an inherent boundary (equal left/right motion; training-defined cat/dog boundary). In these cases, there is less information near the boundary, leading to reduced speed/accuracy and producing a pattern like that shown in Fig. 1G.
This logic does not hold for target detection tasks. There is no inherent middle point boundary between target present and target absent. Instead, in both types of trial, maximum information is present when target and distractors are most dissimilar, and minimum information is present when target and distractors are most similar. The point of greatest similarity occurs at then limit of any metric for similarity. Correspondingly, there is no middle point dip in information that would produce greater difficulty and higher response times. Instead, task difficulty and response times increase monotonically with similarity between targets and distractors, for both target present and target absent decisions. Thus, in Figs. 2F and 2G, response times appear to be highest for animals, which share the largest numbers of closely similar distractors.
DEFINITION OF AREA VH USING fMRI
(1) The area VH boundaries from different experiments are nearly completely non-overlapping.
In line with their theory that VH is a single continuum with a decision boundary somewhere in the middle, the authors use fMRI searchlight to find an area whose responses positively correlate with homogeneity, as calculated across all of their target present and target absent arrays. They report VH-correlated activity in regions anterior to LO. However, the VH defined by symmetry Experiments 3 and 4 (VHsymmetry) is substantially anterior to LO, while the VH defined by target detection Experiments 1 and 2 (VHdetection) is almost immediately adjacent to LO. Fig. S13 shows that VHsymmetry and VHdetection are nearly non-overlapping. This is a fundamental problem with the claim of discovering a new area that represents a new quantity that explains response times across multiple visual tasks. In addition, it is hard to understand why VHsymmetry does not show up in a straightforward subtraction between symmetric and asymmetric objects, which should show a clear difference in homogeneity.
(2) It is hard to understand how neural responses can be correlated with both VHpresent and VHabsent.
The main paper results for VHdetection are based on both target-present and target-absent trials, considered together. It is hard to interpret the observed correlations, since the VHpresent and VHabsent metrics are calculated in such different ways and have opposite correlations with target similarity, task difficulty, and response times (see above). It may be that one or the other dominates the observed correlations. It would be clarifying to analyze correlations for target-present and target-absent trials separately, to see if they are both positive and correlated with each other.
(3) Definition of the boundaries and purpose of a new visual area in the brain requires circumspection, abundant and convergent evidence, and careful controls.
Even if the VH metric, as defined and calculated by the authors here, is a meaningful quantity, it is a bold claim that a large cortical area just anterior to LO is devoted to calculating this metric as its major task. Vision involves much more than target detection and symmetry detection. Cortex anterior to LO is bound to perform a much wider range of visual functionalities. If the reported correlations can be clarified and supported, it would be more circumspect to treat them as one byproduct of unknown visual processing in cortex anterior to LO, rather than treating them as the defining purpose for a large area of visual cortex.
Reviewer #3 (Public Review):
Summary:
This study proposes visual homogeneity as a novel visual property that enables observers perform to several seemingly disparate visual tasks, such as finding an odd item, deciding if two items are same, or judging if an object is symmetric. In Exp 1, the reaction times on several objects were measured in human subjects. In Exp 2, visual homogeneity of each object was calculated based on the reaction time data. The visual homogeneity scores predicted reaction times. This value was also correlated with the BOLD signals in a specific region anterior to LO. Similar methods were used to analyze reaction time and fMRI data in a symmetry detection task. It is concluded that visual homogeneity is an important feature that enables observers to solve these two tasks.
Strengths:
(1) The writing is very clear. The presentation of the study is informative.
(2) This study includes several behavioral and fMRI experiments. I appreciate the scientific rigor of the authors.
Weaknesses:
(1) My main concern with this paper is the way visual homogeneity is computed. On page 10, lines 188-192, it says: "we then asked if there is any point in this multidimensional representation such that distances from this point to the target-present and target-absent response vectors can accurately predict the target-present and target-absent response times with a positive and negative correlation respectively (see Methods)". This is also true for the symmetry detection task. If I understand correctly, the reference point in this perceptual space was found by deliberating satisfying the negative and positive correlations in response times. And then on page 10, lines 200-205, it shows that the positive and negative correlations actually exist. This logic is confusing. The positive and negative correlations emerge only because this method is optimized to do so. It seems more reasonable to identify the reference point of this perceptual space independently, without using the reaction time data. Otherwise, the inference process sounds circular. A simple way is to just use the mean point of all objects in Exp 1, without any optimization towards reaction time data.
(2) Visual homogeneity (at least given the current from) is an unnecessary term. It is similar to distractor heterogeneity/distractor variability/distractor statics in literature. However, the authors attempt to claim it as a novel concept. The title is "visual homogeneity computations in the brain enable solving generic visual tasks". The last sentence of the abstract is "a NOVEL IMAGE PROPERTY, visual homogeneity, is encoded in a localized brain region, to solve generic visual tasks". In the significance, it is mentioned that "we show that these tasks can be solved using a simple property WE DEFINE as visual homogeneity". If the authors agree that visual homogeneity is not new, I suggest a complete rewrite of the title, abstract, significance, and introduction.
(3) Also, "solving generic tasks" is another overstatement. The oddball search tasks, same-different tasks, and symmetric tasks are only a small subset of many visual tasks. Can this "quantitative model" solve motion direction judgment tasks, visual working memory tasks? Perhaps so, but at least this manuscript provides no such evidence. On line 291, it says "we have proposed that visual homogeneity can be used to solve any task that requires discriminating between homogeneous and heterogeneous displays". I think this is a good statement. A title that says "XXXX enable solving discrimination tasks with multi-component displays" is more acceptable. The phrase "generic tasks" is certainly an exaggeration.
(4) If I understand it correctly, one of the key findings of this paper is "the response times for target-present searches were positively correlated with visual homogeneity. By contrast, the response times for target-absent searches were negatively correlated with visual homogeneity" (lines 204-207). I think the authors have already acknowledged that the positive correlation is not surprising at all because it reflects the classic target-distractor similarity effect. But the authors claim that the negative correlations in target-absent searches is the true novel finding.
(5) I would like to make it clear that this negative correlation is not new either. The seminal paper by Duncan and Humphreys (1989) has clearly stated that "difficulty increases with increased similarity of targets to nontargets and decreased similarity between nontargets" (the sentence in their abstract). Here, "similarity between nontargets" is the same as the visual homogeneity defined here. Similar effects have been shown in Duncan (1989) and Nagy, Neriani, and Young (2005). See also the inconsistent results in Nagy& Thomas, 2003, Vicent, Baddeley, Troscianko&Gilchrist, 2009.
More recently, Wei Ji Ma has systematically investigated the effects of heterogeneous distractors in visual search. I think the introduction part of Wei Ji Ma's paper (2020) provides a nice summary of this line of research.
I am surprised that these references are not mentioned at all in this manuscript (except Duncan and Humphreys, 1989).
(6) If the key contribution is the quantitative model, the study should be organized in a different way. Although the findings of positive and negative correlations are not novel, it is still good to propose new models to explain classic phenomena. I would like to mention the three studies by Wei Ji Ma (see below). In these studies, Bayesian observer models were established to account for trial-by-trial behavioral responses. These computational models can also account for the set-size effect, behavior in both localization and detection tasks. I see much more scientific rigor in their studies. Going back to the quantitative model in this paper, I am wondering whether the model can provide any qualitative prediction beyond the positive and negative correlations? Can the model make qualitative predictions that differ from those of Wei Ji's model? If not, can the authors show that the model can quantitatively better account for the data than existing Bayesian models? We should evaluate a model either qualitatively or quantitatively.
(7) In my opinion, one of the advantages of this study is the fMRI dataset, which is valuable because previous studies did not collect fMRI data. The key contribution may be the novel brain region associated with display heterogeneity. If this is the case, I would suggest using a more parametric way to measure this region. For example, one can use Gabor stimuli and systematically manipulate the variations of multiple Gabor stimuli, the same logic also applies to motion direction. If this study uses static Gabor, random dot motion, object images that span from low-level to high-level visual stimuli, and consistently shows that the stimulus heterogeneity is encoded in one brain region, I would say this finding is valuable. But this sounds like another experiment. In other words, it is insufficient to claim a new brain region given the current form of the manuscript.
REFERENCES
- Duncan, J., & Humphreys, G. W. (1989). Visual search and stimulus similarity. Psychological Review, 96(3), 433-458. doi: 10.1037/0033-295x.96.3.433
- Duncan, J. (1989). Boundary conditions on parallel processing in human vision. Perception, 18(4), 457-469. doi: 10.1068/p180457
- Nagy, A. L., Neriani, K. E., & Young, T. L. (2005). Effects of target and distractor heterogeneity on search for a color target. Vision Research, 45(14), 1885-1899. doi: 10.1016/j.visres.2005.01.007
- Nagy, A. L., & Thomas, G. (2003). Distractor heterogeneity, attention, and color in visual search. Vision Research, 43(14), 1541-1552. doi: 10.1016/s0042-6989(03)00234-7
- Vincent, B., Baddeley, R., Troscianko, T., & Gilchrist, I. (2009). Optimal feature integration in visual search. Journal of Vision, 9(5), 15-15. doi: 10.1167/9.5.15
- Singh, A., Mihali, A., Chou, W. C., & Ma, W. J. (2023). A Computational Approach to Search in Visual Working Memory.
- Mihali, A., & Ma, W. J. (2020). The psychophysics of visual search with heterogeneous distractors. BioRxiv, 2020-08.
- Calder-Travis, J., & Ma, W. J. (2020). Explaining the effects of distractor statistics in visual search. Journal of Vision, 20(13), 11-11.