Sex-specific resilience of neocortex to food restriction

  1. Wellcome-MRC Institute of Metabolic Science, University of Cambridge, CB2 0QQ, Cambridge, United Kingdom
  2. Centre for Discovery Brain Sciences, School of Biomedical Sciences, University of Edinburgh, EH8 9XD, Edinburgh, United Kingdom
  3. Simons Initiative for the Developing Brain, University of Edinburgh, EH8 9XD, Edinburgh, United Kingdom

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Brice Bathellier
    Centre National de la Recherche Scientifique, Paris, France
  • Senior Editor
    Kate Wassum
    University of California, Los Angeles, Los Angeles, United States of America

Reviewer #1 (Public Review):

Padamsey et al. followed up on their previous study in which they found that male mice sacrifice visual cortex computation precision to save energy in periods of food restriction (Padamsey et al. 2021, Neuron). In the present study, the authors find that female mice show much lower levels of adaptation in response to food restriction on the level of metabolic signaling and visual cortex computation. This is an important finding for understanding sex differences in adaptation to food scarcity and also impacts the interpretation of studies employing food restriction in behavioral analyses and learning paradigms.

The manuscript is, in general, very clear and the conclusions are straightforward. The main limitation, that the number of experiments is insufficient to compare the effects of food restriction in males and females directly, is discussed by the authors: to address this point they use Bayes factor analysis to provide an estimate of the likelihood that females and males indeed differ in terms of energy metabolism and sensory processing adaptions during food restriction.

The following points are not entirely clear yet.
1. For a number of experiments the authors use their new data set on females and compare that with the data set previously published on males. In how far are these data sets comparable? Have they been performed originally in parallel for example using siblings of different sexes or have the experiments been conducted several years apart from each other? What is the expected variability, if one repeated these experiments with the same sex considering the differences/similarities between experimental setups, housing conditions, interindividual differences, etc.?

2. Energy consumption and visual processing may differ between periods in which animals are in different behavioral states. Is there a possibility that male and female mice differed in behavioral state during measurements? Were animals running or resting during visual stimulation and during ATP measurements?

3. Related to the previous point: the authors show that ATP consumption was reduced in male mice during visual stimulation. What about visual cortex ATP consumption in the absence of visual stimulation? Do food-deprived males and/or females show lower ATP consumption in the visual cortex e.g. during sleep?

Reviewer #2 (Public Review):

Summary:
Padamsey et al build up on previous significant work from the same group which demonstrated robust changes in the visual cortex in male mice from long-term (2-3 weeks) food restriction. Here, the authors extend this finding and reveal striking sex-specific differences in the way the brain responds to food restriction. The measures included the whole-body measure of serum leptin levels, and V1-specific measures of activity of key molecular players (AMPK and PPARα), gene expression patterns, ATP usage in V1, and the sharpness of visual stimulus encoding (orientation tuning). All measures supported the conclusion that the female mouse brain (unlike in males) does not change its energy usage and cortical functional properties on comparable food restriction.

While the effect of food restriction on more peripheral tissue such as muscle and bones has been well studied, this result contributes to our understanding of how the brain responds to food restriction. This result is particularly significant given that the brain consumes a large fraction of the body's energy consumption (20%), with the cortex accounting for half of that amount. The sex-specific differences found here are also relevant for studies using food restriction to investigate cortical function.

Strengths:
The study uses a wide range of approaches mentioned above which converge on the same conclusion, strengthening the core claim of the study.

Weaknesses:
Since the absence of a significant effect does not prove the absence of any changes, the study cannot claim that the female mouse brain does not change in response to food restriction. However, the authors do not make this claim. Instead, they make the well-supported claim that there is a sex-specific difference in the response of V1 to food restriction.

Reviewer #3 (Public Review):

Summary:
The authors food-deprived male and female mice and observed a much stronger reduction of leptin levels, energy consumption in the visual cortex, and visual coding performance in males than females. This indicates a sex-specific strategy for the regulation of the energy budget in the face of low food availability.

Strengths:
This study extends a previous study demonstrating the effect of food deprivation on visual processing in males, by providing a set of clear experimental results, demonstrating the sex-specific difference. It also provides hypotheses about the strategy used by females to reduce energy budget based on the literature.

Weaknesses:
The authors do not provide evidence that females are not impacted by visually guided behaviors contrary to what was shown in males in the previous study.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation