Peer review process
Revised: This Reviewed Preprint has been revised by the authors in response to the previous round of peer review; the eLife assessment and the public reviews have been updated where necessary by the editors and peer reviewers.
Read more about eLife’s peer review process.Editors
- Reviewing EditorBrice BathellierCentre National de la Recherche Scientifique, Paris, France
- Senior EditorKate WassumUniversity of California, Los Angeles, Los Angeles, United States of America
Reviewer #1 (Public Review):
Padamsey et al. followed up on their previous study in which they found that male mice sacrifice visual cortex computation precision to save energy in periods of food restriction (Padamsey et al. 2021, Neuron). In the present study, the authors find that female mice show much lower levels of adaptation in response to food restriction on the level of metabolic signaling and visual cortex computation. This is an important finding for understanding sex differences in adaptation to food scarcity and also impacts the interpretation of studies employing food restriction in behavioral analyses and learning paradigms.
Strengths:
The manuscript is, in general, very clear and the conclusions are straightforward. The experiments are performed in the same conditions for males and females and the authors did not find differences in the behavioral states of male and female mice that could explain differences in energy consumption. Moreover, they show that visual cortex in both males and females does not change its baseline energy consumption in the dark, therefore the adjustment of energy budget in males only targets visual processing.
Weaknesses:
The number of experiments is insufficient to compare the effects of food restriction in males and females directly, which is discussed by the authors: to address this point they use Bayes factor analysis to provide an estimate of the likelihood that females and males indeed differ in terms of energy metabolism and sensory processing adaptions during food restriction.
Reviewer #2 (Public Review):
Summary:
Padamsey et al build up on previous significant work from the same group which demonstrated robust changes in the visual cortex in male mice from long-term (2-3 weeks) food restriction. Here, the authors extend this finding and reveal striking sex-specific differences in the way the brain responds to food restriction. The measures included the whole-body measure of serum leptin levels, and V1-specific measures of activity of key molecular players (AMPK and PPARα), gene expression patterns, ATP usage in V1, and the sharpness of visual stimulus encoding (orientation tuning). All measures supported the conclusion that the female mouse brain (unlike in males) does not change its energy usage and cortical functional properties on comparable food restriction.
While the effect of food restriction on more peripheral tissue such as muscle and bones has been well studied, this result contributes to our understanding of how the brain responds to food restriction. This result is particularly significant given that the brain consumes a large fraction of the body's energy consumption (20%), with the cortex accounting for half of that amount. The sex-specific differences found here are also relevant for studies using food restriction to investigate cortical function.
Strengths:
The study uses a wide range of approaches mentioned above which converge on the same conclusion, strengthening the core claim of the study.
Weaknesses:
Since the absence of a significant effect does not prove the absence of any changes, the study cannot claim that the female mouse brain does not change in response to food restriction. However, the authors do not make this claim. Instead, they make the well-supported claim that there is a sex-specific difference in the response of V1 to food restriction.
Reviewer #3 (Public Review):
Summary:
The authors food-deprived male and female mice and observed a much stronger reduction of leptin levels, energy consumption in the visual cortex, and visual coding performance in males than females. This indicates a sex-specific strategy for the regulation of the energy budget in the face of low food availability.
Strengths:
This study extends a previous study demonstrating the effect of food deprivation on visual processing in males, by providing a set of clear experimental results, demonstrating the sex-specific difference. It also provides hypotheses about the strategy used by females to reduce energy budget based on the literature.
Weaknesses:
The authors do not provide evidence that females are not impacted by visually guided behaviors contrary to what was shown in males in the previous study.