Microprism-based two-photon imaging of the mouse inferior colliculus reveals novel organizational principles of the auditory midbrain

  1. Department of Molecular & Integrative Physiology, University of Illinois at Urbana-Champaign, IL, USA
  2. Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, IL, USA
  3. School of Molecular & Cell Biology, University of Illinois at Urbana-Champaign, IL, USA
  4. Neuroscience Program, University of Illinois at Urbana-Champaign, IL, USA
  5. Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, United States, IL, USA

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Andrew King
    University of Oxford, Oxford, United Kingdom
  • Senior Editor
    Andrew King
    University of Oxford, Oxford, United Kingdom

Reviewer #1 (Public Review):

Summary:
In this paper, the authors provide a characterisation of auditory responses (tones, noise, and amplitude-modulated sounds) and bimodal (somatosensory-auditory) responses and interactions in the higher-order lateral cortex (LC) of the inferior colliculus (IC) and compare these characteristics with the higher order dorsal cortex (DC) of the IC - in awake and anaesthetised mice. Dan Llano's group has previously identified gaba'ergic patches (modules) in the LC distinctly receiving inputs from somatosensory structures, surrounded by matrix regions receiving inputs from the auditory cortex. They here use 2P calcium imaging combined with an implanted prism to - for the first time - get functional optical access to these subregions (modules and matrix) in the lateral cortex of IC in vivo, in order to also characterise the functional difference in these subparts of LC. They find that both DC and LC of both awake and anaesthetised mice appear to be more responsive to more complex sounds (amplitude-modulated noise) compared to pure tones and that under anesthesia the matrix of LC is more modulated by specific frequency and temporal content compared to the gabaergic modules in LC. However, while both LC and DC appear to have low-frequency preferences, this preference for low frequencies is more pronounced in DC. Furthermore, in both awake and anesthetized mice, somatosensory inputs are capable of driving responses on their own in the modules of LC, but very little (possibly not at all) in the matrix. However, bimodal interactions may be different under awake and anesthesia in LC, which warrants deeper investigation by the authors: They find, under anesthesia, more bimodal enhancement in modules of LC compared to the matrix of LC and bimodal suppression dominating the matrix of LC. In contrast, under awake conditions bimodal enhancement is almost exclusively found in the matrix of LC, and bimodal suppression dominates both matrix and modules of LC.

The paper provides new information about how subregions with different inputs and neurochemical profiles in the higher-order auditory midbrain process auditory and multisensory information, and is useful for the auditory and multisensory circuits neuroscience community.

Strengths:
The major strength of this study is undoubtedly the fact that the authors for the first time provide optical access to a subcortical region (the lateral cortex of the inferior colliculus (i.e. higher order auditory midbrain)) which we know (from previous work by the same group) have optically identifiable subdivisions with unique inputs and neurotransmitter release, and plays a central role in auditory and multisensory processing. A description of basic auditory and multisensory properties of this structure is therefore very useful for understanding auditory processing and multisensory interactions in subcortical circuits.

Weaknesses:
I have divided my comments about weaknesses and improvements into major and minor comments. All of which I believe are addressable by the reviewers to provide a more clear picture of their characterisation of the higher-order auditory midbrain.

Major comment:
1. The differences between multisensory interactions in LC in anaesthetised and awake preparations appear to be qualitatively different, though the authors claim they are similar (see also minor comment related to figure 10H for further explanation of what I mean). However, the findings in awake and anaesthetised conditions are summarised differently, and plotting of similar findings in the awake figures and anaesthetised figures are different - and different statistics are used for the same comparisons. This makes it very difficult to assess how multisensory integration in LC is different under awake and anaesthetised conditions. I suggest that the authors plot (and test with similar statistics) the summary plots in Figure 8 (i.e. Figure 8H-K) for awake data in Figure 10, and also make similar plots to Figures 10G-H for anaesthetised data. This will help the readers understand the differences between bimodal stimulation effects on awake and anaesthetised preparations - which in its current form, looks very distinct. In general, it is unclear to me why the awake data related to Figures 9 and 10 is presented in a different way for similar comparisons. Please streamline the presentation of results for anaesthetised and awake results to aid the comparison of results in different states, and explicitly state and discuss differences under awake and anaesthetised conditions.

2. The claim about the degree of tonotopy in LC and DC should be aided by summary statistics to understand the degree to which tonotopy is actually present. For example, the authors could demonstrate that it is not possible/or is possible to predict above chance a cell's BF based on the group of other cells in the area. This will help understand to what degree the tonotopy is topographic vs salt and pepper. Also, it would be good to know if the gaba'ergic modules have a higher propensity of particular BFs or tonotopic structure compared to matrix regions in LC, and also if general tuning properties (e.g. tuning width) are different from the matrix cells and the ones in DC.

3. Throughout the paper more information needs to be given about the number of cells, sessions, and animals used in each panel, and what level was used as n in the statistical tests. For example, in Figure 4 I can't tell if the 4 mice shown for LC imaging are the only 4 mice imaged, and used in the Figure 4E summary or if these are just examples. In general, throughout the paper, it is currently not possible to assess how many cells, sessions, and animals the data shown comes from.

4. Throughout the paper, to better understand the summary maps and plots, it would be helpful to see example responses of the different components investigated. For example, given that module cells appear to have more auditory offset responses, it would be helpful to see what the bimodal, sound-only, and somatosensory responses look like in example cells in LC modules. This also goes for just general examples of what the responses to auditory and somatosensory inputs look like in DC vs LC. In general example plots of what the responses actually look like are needed to better understand what is being summarised.

Reviewer #2 (Public Review):

Summary:
The study describes differences in responses to sounds and whisker deflections as well as combinations of these stimuli in different neurochemically defined subsections of the lateral and dorsal cortex of the inferior colliculus in anesthetised and awake mice.

Strengths:
The main achievement of the work lies in obtaining the data in the first place as this required establishing and refining a challenging surgical procedure to insert a prism that enabled the authors to visualise the lateral surface of the inferior colliculus. Using this approach, the authors were then able to provide the first functional comparison of neural responses inside and outside of the GABA-rich modules of the lateral cortex. The strongest and most interesting aspects of the results, in my opinion, concern the interactions of auditory and somatosensory stimulation. For instance, the authors find that a) somatosensory-responses are strongest inside the modules and b) somatosensory-auditory suppression is stronger in the matrix than in the modules. This suggests that, while somatosensory inputs preferentially target the GABA-rich modules, they do not exclusively target GABAergic neurons within the modules (given that the authors record exclusively from excitatory neurons we wouldn't expect to see somatosensory responses if they targeted exclusively GABAergic neurons), and that the GABAergic neurons of the modules (consistent with previous work) preferentially impact neurons outside the modules, i.e. via long-range connections.

Weaknesses:
While the findings are of interest to the subfield they have only rather limited implications beyond it. The writing is not as precise as it could be. Consequently, the manuscript is unclear in some places. For instance, the text is somewhat confusing as to whether there is a difference in the pattern (modules vs matrix) of somatosensory-auditory suppression between anesthetized and awake animals. Furthermore, there are aspects of the results which are potentially very interesting but have not been explored. For example, there is a remarkable degree of clustering of response properties evident in many of the maps included in the paper. Taking Figure 7 for instance, rather than a salt and pepper organization we can see auditory responsive neurons clumped together and non-responsive neurons clumped together and in the panels below we can see off-responsive neurons forming clusters (although it is not easy to make out the magenta dots against the black background). This degree of clustering seems much stronger than expected and deserves further attention.

Reviewer #3 (Public Review):

The lateral cortex of the inferior colliculus (LC) is a region of the auditory midbrain noted for receiving both auditory and somatosensory input. Anatomical studies have established that somatosensory input primarily impinges on "modular" regions of the LC, which are characterized by high densities of GABAergic neurons, while auditory input is more prominent in the "matrix" regions that surround the modules. However, how auditory and somatosensory stimuli shape activity, both individually and when combined, in the modular and matrix regions of the LC has remained unknown.

The major obstacle to progress has been the location of the LC on the lateral edge of the inferior colliculus where it cannot be accessed in vivo using conventional imaging approaches. The authors overcame this obstacle by developing methods to implant a microprism adjacent to the LC. By redirecting light from the lateral surface of the LC to the dorsal surface of the microprism, the microprism enabled two-photon imaging of the LC via a dorsal approach in anesthetized and awake mice. Then, by crossing GAD-67-GFP mice with Thy1-jRGECO1a mice, the authors showed that they could identify LC modules in vivo using GFP fluorescence while assessing neural responses to auditory, somatosensory, and multimodal stimuli using Ca2+ imaging. Critically, the authors also validated the accuracy of the microprism technique by directly comparing results obtained with a microprism to data collected using conventional imaging of the dorsal-most LC modules, which are directly visible on the dorsal IC surface, finding good correlations between the approaches.

Through this innovative combination of techniques, the authors found that matrix neurons were more sensitive to auditory stimuli than modular neurons, modular neurons were more sensitive to somatosensory stimuli than matrix neurons, and bimodal, auditory-somatosensory stimuli were more likely to suppress activity in matrix neurons and enhance activity in modular neurons. Interestingly, despite their higher sensitivity to somatosensory stimuli than matrix neurons, modular neurons in the anesthetized prep were far more responsive to auditory stimuli than somatosensory stimuli (albeit with a tendency to have offset responses to sounds). This suggests that modular neurons should not be thought of as primarily representing somatosensory input, but rather as being more prone to having their auditory responses modified by somatosensory input. However, this trend was reversed in the awake prep, where modular neurons became more responsive to somatosensory stimuli than auditory stimuli. Thus, to this reviewer, the most intriguing result of the present study is the dramatic extent to which neural responses in the LC changed in the awake preparation. While this is not entirely unexpected, the magnitude and stimulus specificity of the changes caused by anesthesia highlight the extent to which higher-level sensory processing is affected by anesthesia and strongly suggest that future studies of LC function should be conducted in awake animals.

Together, the results of this study expand our understanding of the functional roles of matrix and module neurons by showing that responses in LC subregions are more complicated than might have been expected based on anatomy alone. The development of the microprism technique for imaging the LC will be a boon to the field, finally enabling much-needed studies of LC function in vivo. The experiments were well-designed and well-controlled, and the limitations of two-photon imaging for tracking neural activity are acknowledged. Appropriate statistical tests were used. There are three main issues the authors should address, but otherwise, this study represents an important advance in the field.

  1. Please address whether the Thy1 mouse evenly expresses jRGECO1a in all LC neurons. It is known that these mice express jRGECO1a in subsets of neurons in the cerebral cortex, and similar biases in the LC could have biased the results here.

  2. I suggest adding a paragraph or two to the discussion to address the large differences observed between the anesthetized and awake preparations. For example, somatosensory responses in the modules increased dramatically from 14.4% in the anesthetized prep to 63.6% in the awake prep. At the same time, auditory responses decreased from 52.1% to 22%. (Numbers for anesthetized prep include auditory responses and somatosensory + auditory responses.). In addition, the tonotopy of the DC shifted in the awake condition. These are intriguing changes that are not entirely expected from the switch to an awake prep and therefore warrant discussion.

  3. For somatosensory stimuli, the authors used whisker deflection, but based on the anatomy, this is presumably not the only somatosensory stimulus that affects LC. The authors could help readers place the present results in a broader context by discussing how other somatosensory stimuli might come into play. For example, might a larger percentage of modular neurons be activated by somatosensory stimuli if more diverse stimuli were used?

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation