Author response:
The following is the authors’ response to the original reviews.
Reviewer 1
(1) Given the low trial numbers, and the point of sequential vs clustered reactivation mentioned in the public review, it would be reassuring to see an additional sanity check demonstrating that future items that are currently not on-screen can be decoded with confidence, and if so, when in time the peak reactivation occurs. For example, the authors could show separately the decoding accuracy for near and far items in Fig. 5A, instead of plotting only the difference between them.
We have now added the requested analysis showing the raw decoded probabilities for near and distant items separately in Figure 5A. We have also chosen to replace Figure 5B with the new figure as we think it provides more information than the previous Figure 5B. Instead, we have moved Figure 5B to the supplement. The median peak decoded accuracy for near and distant items is equivalent. We have added the following description to the figure:
“Decoded raw probabilities for off-screen items, that were up to two steps ahead of the current stimulus cue (‘near’,) vs. distant items that were more than two steps away on the graph, on trials with correct answers. The median peak decoded probability for near and distant items was at the same time point for both probability categories. Note that displayed lines reflect the average probability while, to eliminate influence of outliers, the peak displays the median.”
(2) The non-sequential reactivation analyses often use a time window of peak decodability, and it was not entirely clear to me what data this time window is determined on, e.g., was it determined based on all future reactivations irrespective of graph distance? This should be clarified in the methods.
Thank you for raising this. We now clarify this in the relevant section to read: “First, we calculated a time point of interest by computing the peak probability estimate of decoders across all trials, i.e., the average probability for each timepoint of all trials (except previous onscreen items) of all distances, which is equivalent to the peak of the differential reactivation analysis”
(3) Fig 4 shows evidence for forward and backward sequential reactivation, suggesting that both forward and backward replay peak at a lag of 40-50msec. It would be helpful if this counterintuitive finding could be picked up in the discussion, explaining how plausible it is, physiologically, to find forward and backward replay at the same lag, and whether this could be an artifact of the TDLM method.
This is an important point and we agree that it appears counterintuitive. However, we would highlight this exact time range has been reported in previous studies, though t never for both forward and backward replay. We now include a discussion of this finding. The section now reads:
“[… ] Even though we primarily focused on the mean sequenceness scores across time lags, there appears s to be a (non-significant) peak at 40-60 milliseconds. While simultaneous forward and backward replay is theoretically possible, we acknowledge that it is somewhat surprising and, given our paradigm, could relate to other factors such as autocorrelations (Liu, Dolan, et al., 2021).”
(4) It is reported that participants with below 30% decoding accuracy are excluded from the main analyses. It would be helpful if the manuscript included very specific information about this exclusion, e.g., was the criterion established based on the localizer cross-validated data, the temporal generalisation to the cued item (Fig. 2), or only based on peak decodability of the future sequence items? If the latter, is it applied based on near or far reactivations, or both?
We now clarify this point to include more specific information, which reads:
“[…] Therefore, we decided a priori that participants with a peak decoding accuracy of below 30% would be excluded from the analysis (nine participants in all) as obtained from the cross-validation of localizer trials”
(5) Regarding the low amount of data for the reactivation analysis, the manuscript should be explicit about the number of trials available for each participant. For example, Supplemental Fig. 1 could provide this information directly, rather than the proportion of excluded trials.
We have adapted the plot in the supplement to show the absolute number of rejected epochs per participant, in addition to the ratio.
(6) More generally, the supplements could include more detailed information in the legends.
We agree and have added more extensive explanation of the plots in the supplement legends.
(7) The choice of comparing the 2 nearest with all other future items in the clustered reactivation analysis should be better motivated, e.g., was this based on the Wimmer et al. (2020) study?
We have added our motivation for taking the two nearest items and contrasting them with the items further away. The paragraph reads:
“[…] We chose to combine the following two items for two reasons: First, this doubled the number of included trials; secondly, using this approach the number of trials for each category (“near” and “distant”) was more balanced. […]”
Reviewer 2
(1) Focus exclusively on retrieval data (and here just on the current image trials).
If I understand correctly, you focus all your analyses (behavioural as well as MEG analyses) on retrieval data only and here just on the current image trials. I am surprised by that since I see some shortcomings due to that. These shortcomings can likely be addressed by including the learning data (and predecessor image trials) in your analyses.
a) Number of trials: During each block, you presented each of the twelve edges once. During retrieval, participants then did one "single testing session block". Does that mean that all your results are based on max. 12 trials? Given that participants remembered, on average, 80% this means even fewer trials, i.e., 9-10 trials?
This is correct and a limitation of the paper. However, while we used only correct trials for the reactivation analysis, the sequential analysis was conducted using all trials disregarding the response behaviour. To retain comparability with previous studies we mainly focused on data from after a consolidation phase. Nevertheless, despite the trial limitation we consider the results are robust and worth reporting. Additionally, based on the suggestion of the referee, we now include results from learning blocks (see below).
b) Extend the behavioural and replay/reactivation analysis to predecessor images.
Why do you restrict your analyses to the current image trials? Especially given that you have such a low trial number for your analyses, I was wondering why you did not include the predecessor trials (except the non-deterministic trials, like the zebra and the foot according to Figure 2B) as well.
We agree it would be great to increase power by adding the predecessor images to the current image cue analysis, excluding the ambiguous trials, we did not do so as we considered the underlying retrieval processes of these trial types are not the same, i.e. cannot be simply combined. Nevertheless, we have performed the suggested analysis to check if it increases our power. We found, that the reactivation effect is robust and significant at the same time point of 220-230 ms. However, the effect size actually decreased: While before, peak differential reactivation was at 0.13, it is now at 0.07. This in fact makes conceptual sense. We suspect that the two processes that are elicited by showing a single cue and by showing a second, related, cue are distinct insofar as the predecessor image acts as a primer for the current image, potentially changing the time course/speed of retrieval. Given our concerns that the two processes are not actually the same we consider it important to avoid mixing these data.
We have added a statement to the manuscript discussing this point. The section reads:
“Note that we only included data from the current image cue, and not from the predecessor image cue, as we assume the retrieval processes differ and should not be concatenated.”
c) Extend the behavioural and replay/reactivation analysis to learning trials.
Similar to point 1b, why did you not include learning trials in your analyses?
The advantage of including (correct and incorrect) learning trials has the advantage that you do not have to exclude 7 participants due to ceiling performance (100%).
Further, you could actually test the hypothesis that you outline in your discussion: "This implies that there may be a switch from sequential replay to clustered reactivation corresponding to when learned material can be accessed simultaneously without interference." Accordingly, you would expect to see more replay (and less "clustered" reactivation) in the first learning blocks compared to retrieval (after the rest period).
To track reactivation and replay over the course of learning is a great idea. We have given a lot of thought as to how to integrate these findings but have not found a satisfying solution. Thus, analysis of the learning data turned out to be quite tricky: We decided that each participant should perform as many blocks as necessary to reach at least 80% (with a limit of six and lower bound of two, see Supplement figure 4). Indeed, some participant learned 100% of the sequence after one block (these were mostly medical students, learning things by hard is their daily task). With the benefit of hindsight, we realise our design means that different blocks are not directly comparable between participants. In theory, we would expect that replay emerges in parallel with learning and then gradually changes to clustered reactivation as memory traces become consolidated/stronger. However, it is unclear when replay should emerge and when precisely a switch to clustered reactivation would happen. For this reason, we initially decided not to include the learning trials into the paper.
Nevertheless, to provide some insight into the learning process, and to see how consolidation impacts differential reactivation and replay, we have split our data into pre and post resting state, aggregating all learning trials of each participant. While this does not allow us to track processes on a block basis, it does offer potential (albeit limited) insight into the hypothesis we outline in the discussion.
For reactivation, we see emergence of a clear increase, further strengthening the outlined hypothesis, however, for replay the evidence is less clear, as we do not know over how many learning blocks replay is expected.
We calculated individual trajectories of how reactivation and replay changes from learning to retrieval and related these to performance. Indeed, we see an increase of reactivation is nominally associated with higher learning performance, while an increase in replay strength is associated with lower performance (both non-significant). However, due to the above-mentioned reasons we think it would premature to add this weak evidence to the paper.
To mitigate problems of experiment design in relation to this question we are currently implementing a follow-study, where we aim to normalize the learning process across participants and index how replay/reactivation changes over the course of learning and after consolidation.
We have added plots showing clustered reactivation sequential replay measures during learning (Figure 5D and Supplement 8)
The added section(s) now read:
“To provide greater detail on how the 8-minute consolidation period affected reactivation we, post-hoc, looked at relevant measures across learning trials in contrast to retrieval trials. For all learning trials, for each participant, we calculated differential reactivation for the same time point we found significant in the previous analysis (220-260 milliseconds). On average, differential reactivation probability increased from pre to post resting state (Figure 5D). […]
Nevertheless, even though our results show a nominal increase in reactivation from learning to retrieval (see Figure 5D), due to experimental design features our data do not enable us to test for an hypothesized switch for sequential replay (see also “limitations” and Supplement 8).”
d) Introduction (last paragraph): "We examined the relationship of graph learning to reactivation and replay in a task where participants learned a ..." If all your behavioural analyses are based on retrieval performance, I think that you do not investigate graph learning (since you exclusively focus the analyses on retrieving the graph structure). However, relating the graph learning performance and replay/reactivation activity during learning trials (i.e., during graph learning) to retrieval trials might be interesting but beyond the scope of this paper.
We agree. We have changed the wording to be more accurate. Indeed, we do not examine graph learning but instead examine retrieval from a graph, after graph learning. The mentioned sentence now read
“[…] relationship of retrieval from a learned graph structure to reactivation [...]”
e) It is sometimes difficult to follow what phase of the experiment you refer to since you use the terms retrieval and test synonymously. Not a huge problem at all but maybe you want to stick to one term throughout the whole paper.
Thank you for pointing this out. We have now adapted the manuscript to exclusively refer to “retrieval” and not to “test”.
(2) Is your reactivation clustered?
In Figure 5A, you compare the reactivation strength of the two items following the cue image (i.e., current image trials) with items further away on the graph. I do not completely understand why your results are evidence for clustered reactivation in contrast to replay.
First, it would be interesting to see the reactivation of near vs. distant items before taking the difference (time course of item probabilities).
(copied answer from response to Reviewer 1, as the same remark was raised)
We have added the requested analysis showing the raw decoded probabilities for near and distant items separately in Figure 5A. We have chosen to replace Figure 5B with the new figure as we think that it offers more information than the previous Figure 5B. Instead, we have moved Figure 5B to the supplement. The median peak decoded accuracy for near and distant items is equivalent. We have added the following description to the figure:
“Decoded raw probabilities for off-screen items, that were up to two steps ahead of the current stimulus cue (‘near’,) vs. distant items that were more than two steps away on the graph, on trials with correct answers. The median peak decoded probability for near and distant items was at the same time point for both probability categories. Note that displayed lines reflect the average probability while, to eliminate influence of outliers, the peak displays the median. .”
Second, could it still be that the first item is reactivated before the second item? By averaging across both items, it becomes not apparent what the temporal courses of probabilities of both items look like (and whether they follow a sequential pattern). Additionally, the Gaussian smoothing kernel across the time dimension might diminish sequential reactivation and favour clustered reactivation. (In the manuscript, what does a Gaussian smoothing kernel of = 1 refer to?). Could you please explain in more detail why you assume non-sequential clustered reactivation here and substantiate this with additional analyses?
We apologise for the unclear description. Note the Gaussian kernel is in fact only used for the reactivation analysis and not the replay analysis, so any small temporal successions would have been picked up by the sequential analysis. We now clarify this in the respective section of the sequential analysis and also explain the parameter of delta= 1 in the reactivation analysis section. The paragraph now reads
“[…] As input for the sequential analysis, we used the raw probabilities of the ten classifiers corresponding to the stimuli. [...]
[…] Therefore, to address this we applied a Gaussian smoothing kernel (using scipy.ndimage.gaussian_filter with the default parameter of σ=1 which corresponds approximately to taking the surrounding timesteps in both direction with the following weighting: current time step: 40%, ±1 step: 25%, ±2 step: 5%, ±3 step: 0.5%) [...]”
(3) Replay and/or clustered reactivation?
The relationship between the sequential forward replay, differential reactivation, and graph reactivation analysis is not really apparent. Wimmer et al. demonstrated that high performers show clustered reactivation rather than sequential reactivation. However, you did not differentiate in your differential reactivation analysis between high vs. low performers. (You point out in the discussion that this is due to a low number of low performers.)
We agree that a split into high vs low performers would have been preferably for our analysis. However, there is one major obstacle that made us opt for a correlational analysis instead: We employed criteria learning, rendering a categorical grouping conceptually biased. Even though not all participants reached the criteria of 80%, our sample did not naturally split between high and low performers but was biased towards higher performance, leaving the groups uneven. The median performance was 83% (mean ~81%), with six of our subjects (~1/4th of included participant) having this exact performance. This makes a median or mean split difficult, as either binning assignment choice would strongly affect the results. We have added a limitations section in which we extensively discuss this shortcoming and reasoning for not performing a median split as in Wimmer et al (2020). The section now reads:
“There are some limitations to our study, most of which originate from a suboptimal study design. [...], as we performed criteria learning, a sub-group analysis as in Wimmer et al., (2020) was not feasible, as median performance in our sample would have been 83% (mean 81%), with six participants exactly at that threshold. [...]”
It might be worth trying to bring the analysis together, for example by comparing sequential forward replay and differential reactivation at the beginning of graph learning (when performance is low) vs. retrieval (when performance is high).
Thank you for the suggestion to include the learning segments, which we think improves the paper quite substantially. However, analysis of the learning data turned out to be quite tricky> We had decided that each participant should perform as many blocks as necessary to reach at least 80% accuracy (with a limit of six and lower bound of two, see Supplement figure 4). Some participants learned 100% of the sequence after one block (these were mostly medical students, learning things by hard is their daily task). This in hindsight is an unfortunate design feature in relation to learning as it means different blocks are not directly comparable between participants.
In theory, we would expect that replay emerges in parallel with learning and then gradually change to clustered reactivation, as memory traces get consolidated/stronger. However, it is unclear when replay would emerge and when the switch to reactivation would happen. For this reason, we initially decided not to include the learning trials into the paper at all.
Nevertheless, to give some insight into the learning process and to see how consolidation effects differential reactivation and replay, we have split our data into pre and post resting state, aggregating all learning trials of each participant. While this does not allow us to track measures of interest on a block basis, it gives some (albeit limited) insight into the hypothesis outlined in our discussion.
For reactivation, we see a clear increase, further strengthening the outlined hypothesis, However, for replay the evidence is less obvious, potentially due to that fact that we do not know across how many learning blocks replay is to be expected.
The added section(s) now read:
“To examine how the 8-minute consolidation period affected reactivation we, post-hoc, looked at relevant measures during learning trials in contrast to retrieval trials. For all learning trial, for each participant, we calculated differential reactivation for the time point we found significant during the previous analysis (220-260 milliseconds). On average, differential reactivation probability increased from pre to post resting state (Figure 5D).
[…]
Nevertheless, even though our results show a nominal increase in reactivation from learning to retrieval (see Figure 5D), our data does not enable us to show an hypothesized switch for sequential replay (see also “limitations” and Supplement 8).”
Additionally, the main research question is not that clear to me. Based on the introduction, I thought the focus was on replay vs. clustered reactivation and high vs. low performance (which I think is really interesting). However, the title is more about reactivation strength and graph distance within cognitive maps. Are these two research questions related? And if so, how?
We agree we need to be clearer on this point. We have added two sentences to the introduction, which should address this point. The section now reads:
“[…] In particular, the question remains how the brain keeps track of graph distances for successful recall and whether the previously found difference between high and low performers also holds true within a more complex graph learning context.”
(4) Learning the graph structure.
I was wondering whether you have any behavioural measures to show that participants actually learn the graph structure (instead of just pairs or triplets of objects). For example, do you see that participants chose the distractor image that was closer to the target more frequently than the distractor image that was further away (close vs. distal target comparison)? It should be random at the beginning of learning but might become more biased towards the close target.
Thanks, this is an excellent suggestion. Our analysis indeed shows that people take the near lure more often than the far lure in later blocks, while it is random in the first block.
Nevertheless, we have decided to put these data into the supplement and reference it in the text. This is because analysis of the learning blocks is challenging and biased in general. Each participant had a different number of learning blocks based on their learning rate, and this makes it difficult to compare learning across participants. We have tried our best to accommodate and explain these difficulties in the figure legend. Nevertheless, we thank the referee for guidance here and this analysis indeed provides further evidence that participants learned the actual graph structure.
The added section reads
“Additionally, we have included an analysis showing how wrong answers participants provided were random in the first block and biased towards closer graph nodes in later blocks. This is consistent with participants actually learning the underlying graph structure as opposed to independent triplets (see figure and legend of Supplement 6 for details).”
(5) Minor comments
a) "Replay analysis relies on a successive detection of stimuli where the chance of detection exponentially decreases with each step (e.g., detecting two successive stimuli with a chance of 30% leaves a 9% chance of detecting the replay event). " Could you explain in more detail why 30% is a good threshold then?
Thank you. We have further clarified the section. As we are working mainly with probabilities, it is useful to keep in mind that accuracy is a class metric that only provides a rough estimate of classifier ability. Alternatively, something like a Top-3-Accuracy would be preferable, but also slightly silly in the context of 10 classes.
Nevertheless, subtle changes in probability estimates are present and can be picked up by the methods we employ. Therefore, the 30% is a rough lower bound and decided based on pilot data that showed that clean MEG data from attentive participants can usually reach this threshold. The section now reads:
“(e.g., detecting two successive stimuli with a chance of 30% leaves a 9% chance of detecting a replay event). However, one needs to bear in mind that accuracy is a “winnertakes-all” metric indicating whether the top choice also has the highest probability, disregarding subtle, relative changes in assigned probability. As the methods used in this analysis are performed on probability estimates and not class labels, one can expect that the 30% are a rough lower bound and that the actual sensitivity within the analysis will be higher. Additionally, based on pilot data, we found that attentive participants were able to reach 30% decodability, allowing us to use decodability as a data quality check. “
b) Could you make explicit how your decoders were designed? Especially given that you added null data, did you train individual decoders for one class vs. all other classes (n = 9 + null data) or one class vs. null data?
We added detail to the decoder training. The section now reads
“Decoders were trained using a one-vs-all approach, which means that for each class, a separate classifier was trained using positive examples (target class) and negative examples (all other classes) plus null examples (data from before stimulus presentation, see below). In detail, null data was.”
c) Why did you choose a ratio of 1:2 for your null data?
Our choice for using a higher ratio was based upon previous publications reporting better sensitivity of TDLM using higher ratios, as spatial sensor correlations are decreasing. Nevertheless, this choice was not well investigated beforehand. We have added more information to this to the manuscript
d) You could think about putting the questionnaire results into the supplement if they are sanity checks.
We have added the questionnaire results. However, due to the size of the tables, we have decided to add them as excel files into the supplementary files of the code repository. We have mentioned the existence file in the publication.
e) Figure 2. There is a typo in D: It says "Precessor Image" instead of "Predecessor Image".
Fixed typo in figure.
f) You write "Trials for the localizer task were created from -0.1 to 0.5 seconds relative to visual stimulus onset to train the decoders and for the retrieval task, from 0 to 1.5 seconds after onset of the second visual cue image." But the Figure legend 3D starts at -0.1 seconds for the retrieval test.
We have now clarified this. For the classifier cross-validation and transfer sanity check and clustered analysis we used trials from -0.1 to 0.5s, whereas for the sequenceness analysis of the retrieval, we used trials from 0 to 1.5 seconds