Peer review process
Revised: This Reviewed Preprint has been revised by the authors in response to the previous round of peer review; the eLife assessment and the public reviews have been updated where necessary by the editors and peer reviewers.
Read more about eLife’s peer review process.Editors
- Reviewing EditorDolores ShobackUniversity of California, San Francisco, San Francisco, United States of America
- Senior EditorYamini DalalNational Cancer Institute, Bethesda, United States of America
Reviewer #1 (Public Review):
The manuscript by Hong-Qian Chen and collaborators describes the development of a mouse model that co-expresses a fluorescent protein ZsGreen marker in gene fusion with the Fshr gene.
The authors are correct in that there is a lack of reliable antibodies against many of the GPCR family members. The approach is novel and interesting, with a potential to help understand the expression pattern of gonadotropin receptors. There has been a very long debate about the expression of gonadotropin receptors in other tissues other than gonads. While their expression of the Fshr in some of those tissues has been detected by a variety of methods, their physiological, or pathophysiological, function(s) remain elusive.
The authors in this manuscript assume that the expression of ZsGren and the Fshr are equal. While this is correct genetically (transcription->translation) it does not go hand in hand to other posttranslational processes.
One of the shocking observations in this manuscript is the expression of Fshr in Leydig cells. Other observations are in the osteoblasts and endothelial cells as well as epithelial cells in different organs. The expression of ZsGreen in these tissues seems high and one shall start questioning if there are other mechanisms at play here.
First, the turnover of fluorescent proteins is long, longer than 48h, which means that they accumulate at a different speed than the endogenous Fshr. This means that ZsGreen will accumulate in time while the Fshr receptor might be degraded almost immediately. This correlated with mRNA expression (by the authors) but does not with the results of other studies in single-cell sequencing (see below).
Then, the expression of ZsGreen in Leydig cells seems much higher than in Sertoli cells, this is "disturbing" to put it mildly. This is visible in both, the ZsGreen expression and the FISH assay (Fig 2 B-D).
The expression in WAT and BAT is also questionable as the expression of ZsGreen is high everywhere. What makes it difficult to actually believe that the images are truly informative? For example, the stainings of the aorta show the ZsGreen expression where elastin and collagen fibres are - these are not "cells" and therefore are not expressing ZsGreen.
FISH expression (for Fshr) in WT mice is missing.
Also, the tissue sections were stained with the IgG only (neg control) but in practice both the KI and the WT tissues should be stained with the primary and secondary antibodies.
The only control that I could think of to truly get a sense of this would be a tagged receptor (N-terminal) that could then be analysed by immunohistochemistry.
The authors also claim:
To functionally prove the presence of Fshr in osteoblasts/osteocytes, we also deleted Fshr in osteocytes using an inducible model. The conditional knockout of Fshr triggered a much more profound increase in bone mass and decrease in fat mass than blockade by Fsh antibodies (unpublished data)
This would be a good control for all their images. I think it is necessary to make the large claim of extragonadal expression, as well as intragonadal such as Leydig cells.
Claiming that the under-developed Leydig cells in FSHR KO animals is due to a direct effect of the FSHR, and not via a cross-talk between Sertoli and Leydig cells, is too much of a claim. It might be speculated to some degree but as written at the moment is suggests this is "proven".
We also do not know if this Fshr expressed is a spliced form that would also result in the expression of ZsGreen but in a non-functional Fshr, or whether the Fshr is immediately degraded after expression. The insertion of the ZsGreen might have disturbed the epigenetics, transcription or biosynthesis of the mRNA regulation.
The authors should go through single-cell data of WT mice to show the existence of the Fshr transcript(s). For example here:
https://www.nature.com/articles/sdata2018192
Comments after revision:
The response by the authors does not seem sufficient or adequate, by any length, for what one would expect for a work having such a large claim as the expression of the Fshr in multiple cell types and organs. It is not the fact that Fshr might be expressed extragonadally or even by other cells in the gonads, but the surprising images where virtually every cell in the provided tissues, and not only cells but structures, glows green.
It is not possible to know, as a reviewer, whether the excitation intensity and exposure for all images is equal. We believe that they cannot be, as control organs such as fat, testes, ovaries, and vasculature have a natural fluorescence background.
Leydig cells cannot simply express more Fshr than Sertoli cells, that would go against what we have known for >50 years in physiology. While it is scientific to question 'old' data, to make extraordinary claims there is a need for "extraordinary evidence". There is very low expression in Sertoli cells (Fig 2) while Leydig cells and spermatozoa glow vividly.
Moreover, even the tails of spermatozoa glow! This is not cytoplasm and cannot contain a soluble fluorescent protein.
The controls should be shown side-by-side to the experimental images. It would be a lot more credible if the WT and the KI tissues were placed on the same slide, with images taken from them side by side not only for ZsGreen but antibody immunofluorescence staining.
Moreover, I noticed that the entire manuscript is based on a single founder mouse, which is not acceptable as an error - either multiple integrations other than in the correct locus or genetic instability created by the KI integration would result in promiscuous expression. The founder mouse is not well enough characterised as it is only performed by Southern blots and PCR, while additional integrations cannot be detected by such. Other methods should be used such as FISH or even whole genome sequencing. Yet, several lines should be used to ensure no other effects exist.
In Fig 5, the section of aorta shows low staining in the elastin/collagen fibres, while there is clearly in Suppl Data 2. In the same figure, the 2nd lung images show green fluorescence in the mucosa (centre) which should not be as there is no cells there.
The additional single-cell data does not truly support their claims, in the sense that while some of the data might go in line e.g. Leydig cells showing as high expression as "tubules", there are many other cell types that show no expression such as hepatocytes and skeletal muscle, where the authors claim to have high expression of Fshr. Moreover, in the datasets presented organs like "ovary" have almost no Fshr expression, which should question the validity of such.
The authors use an Fshr antibody without enough validation. The Fshr KO animals should be used for this. In fact, one of the very first statements in the manuscript is that antibodies against GPCRs in general, and gonadotropin receptors more specifically, are unreliable. The fact that controls show the same pattern as transgenic animals questions the validity, as no single acceptable antibody against FSHR recognises Leydig cells.
The detection of Fshr in e.g. adipocytes of B6 mice is as questionable as many other claims of gonadotropin receptors in extragonadal tissues, which has been questioned a number of times by many researchers.
One question we should ask is, is there any tissue on these mice that does not 'express' (Fshr)-ZsGreen? Because from what I see every single tissue analysed has 'Fshr". Which might be the problem why it is so difficult to find.
Some images seem to be duplicated such as in Fig 2C where the first row and the 3rd row seem to be the same image.