Specific and comprehensive genetic targeting reveals brain-wide distribution and synaptic input patterns of GABAergic axo-axonic interneurons

  1. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
  2. Program in Neurobiology, Stony Brook University, NY, 11794, USA
  3. Department of Neurobiology, Duke University, Durham, NC 27710, USA
  4. Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA, 17033
  5. Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a response from the authors (if available).

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Linda Overstreet-Wadiche
    University of Alabama at Birmingham, Birmingham, United States of America
  • Senior Editor
    John Huguenard
    Stanford University School of Medicine, Stanford, United States of America

Reviewer #1 (Public Review):

Summary:
In this manuscript, the authors set out to develop genetic tools that can specifically and comprehensively label Axo-Axonic Cells (AACs), also known as Chandelier cells. These AACs possess unique morphological and connectivity features, making them an ideal subject for studying various aspects of cell types across different experimental methods. To achieve both specificity and comprehensiveness in AAC labeling, the authors employ an intersectional strategy that combines lineage origin and molecular markers. This approach successfully targets AACs across the mouse brain and reveals their widespread distribution in various brain structures beyond the previously known regions. Additionally, the authors utilize rabies transneuronal labeling to provide a comprehensive overview of AACs, their variations, and input sources throughout the brain. This experimental approach offers a powerful model system for investigating the role of AACs in circuit development and function across diverse brain regions.

Strengths:
Genetic Tools and Specificity: The authors' genetic tools show qualitative evidence of specificity for AACs, opening new avenues for targeted research on these cells. The use of intersectional strategies enhances the precision of AAC labeling.

Widespread Distribution: The study significantly broadens our understanding of AAC distribution, revealing their presence in brain regions beyond what was previously documented. This expanded knowledge is a valuable contribution to the field.

Transneuronal Labeling: The inclusion of rabies transneuronal labeling provides a comprehensive view of AACs, their variations, and input sources, allowing for a more holistic understanding of their role in neural circuits.

Weaknesses:
Quantitative Analysis: While the claim of specificity appears qualitatively convincing, the manuscript could be improved with more quantitative analysis.

Comprehensiveness Claim: The assertion of comprehensiveness, implying labeling "almost all" AACs in all brain regions, is challenging to substantiate conclusively. Acknowledging the limitations of proving complete comprehensiveness and discussing them in the discussion section would be more appropriate than asserting it in the results section.

Local Inputs: While the manuscript focuses on inter-areal inputs to AACs, it would benefit from exploring local inputs as well. Identifying the local neurons that target AACs and analyzing their patterns could provide valuable insights into AAC function within specific brain regions.

Discussion Focus: The discussion section should delve deeper into the biological implications of the findings, moving beyond technical significance. Exploring similarities and differences in input patterns between AACs and other cell types, and linking them to the locations of starter cells or specific connectivity patterns in the brain, would enrich the discussion. For instance, investigating whether input patterns can be predicted based on the locations of starter cells or connectivity specificity could provide valuable insights.

Reviewer #2 (Public Review):

Summary:
The goals of this study were to develop a genetic approach that would specifically and comprehensively target axo-axonic cells (AACs) throughout the brain and then to describe the patterns and characteristics of the targeted AACs in multiple, selected brain regions. The investigators have been successful in providing the most complete description of the regional distribution of putative (pAACs) throughout the brain to date. The supporting evidence is convincing, even though incomplete in some brain regions. The findings should serve as a guide for more detailed studies of AACs within each brain region and lead to new insights into the connectivity and functional organization of this important group of GABAergic interneurons.

Strengths:
The study has numerous strengths. A major strength is the development of a unique intersectional genetic strategy that uses cell lineage (Nkx2.1) and molecular (Unc5b or Pthlh) markers to identify axo-axonic AACs specifically and, apparently, nearly completely throughout the mouse brain. While AACs have been described previously in the cerebral cortex, hippocampus, and amygdala, there has been no specific genetic marker that selectively identifies all AACs in these regions.

The current genetic strategy has labeled pAACs in a large number of additional brain regions, including the claustrum-insular complex, extended amygdala, and several olfactory centers. In general, the findings provide support for the specificity of the methods for targeting AACs, and include some examples of labeling near markers of axon initial segments. However, the Investigators are careful to refer to labeled neurons as "putative AACs" as they have not been fully characterized and their identity verified.

The descriptions and numerous low-magnification images of the brain provide a roadmap for subsequent, detailed studies of AACs in numerous brain regions. The overview and summaries of the findings in the Abstract, Introduction, and Discussion are particularly clear and helpful in placing the extensive regional descriptions of AACs in context.

Weaknesses:
One weakness of the study is the lack of an illustration of the high-resolution cell labeling that can be achieved with the methods, including labeling of numerous rows of axon terminals in contact with axon initial segments. The initial images of the brain-wide distribution of putative AACs are necessarily presented at low magnification. Although the authors indicate that the cells have "highly characteristic AAC labeling patterns throughout the neocortex, hippocampus and BLA", these morphological details cannot be visualized by the reader at the current magnification, even when the images are enlarged on the computer screen. Some of the details become evident in later Figures, but an initial illustration of single cell labeling with confocal microscopy, or tracing of their characteristic axonal arbors, would support the specificity of the labeling in the low magnification images.

Table 1 indicates that the AAC identity of the cells has been validated in many brain regions but not in all. The methods used for validation have not been described and should be included for completeness. The authors are careful to acknowledge that labeled cells in some regions have not been validated and refer to such cells as pAACs.

The intersectional genetic methods included the use of the lineage marker Nkx2.1 with either Unc5b or Pthlh as the molecular marker. As described, the mice with intersectional targeting of Nkx2.1 and Unc5b appear to show the most specific brain-wide labeling for AACs, and the majority of the descriptions are from these mice. The targeting with Nkx2.1 and Pthlh is less convincing. The title for Figure 1 Supplemental Figure 3 suggests a similar AAC distribution in the Pthlh;Nkx2.1 mouse compared to the Unc5b;Nkx2.1 mouse. However, the descriptions of the individual panels suggest a number of inconsistencies and non-AAC labeling. The heavy labeling in the caudate and cells in layer 4 is particularly problematic. Based on the data presented, it appears that heavy labeling achieved in these mice could not be relied on for specific labeling of all AACs, although specific labeling could be achieved under some conditions, such as following tamoxifen administration at select ages.

The methods described for dense labeling and single-cell labeling are described briefly in the methods. Some discussion of the development of the methods would be useful, including how it was determined that methods for heavy labeling identified AACs specifically and completely.

Reviewer #3 (Public Review):

Summary:
Raudales et al. aimed at providing an insight into the brain-wide distribution and synaptic connectivity of bona fide GABAergic inhibitory interneuron subtypes focusing on the axo-axonic cell (AAC), one of the most distinctive interneuron subtypes, which innervates the axon initial segments of glutamatergic projection neurons. They establish intersectional genetic strategies that enable them to specifically and comprehensively capture AACs based on their lineage (Nkx2.1) and marker expression (Unc5b, Pthlh). They find that AACs are deployed across essentially all the pallium-derived brain structures as well as the anterior olfactory nucleus, taenia tecta, and lateral septum. They show that AACs in distinct areas and layers of the neocortex as well as different subregions of the hippocampal formation display unique soma and synaptic density and morphological variations. Rabies virus-based retrograde monosynaptic input tracing reveals that AACs in the neocortex, the hippocampus, and the basolateral amygdala receive synaptic inputs from common as well as specific brain regions and supports the utility of this novel genetic approach. This study elucidates brain-wide neuroanatomical features and morphological variations of AACs with solid techniques and analysis. Their novel AAC-targeting strategies will facilitate the study of their development and function in different brain regions. The conclusions in this paper are well supported by the data. However, there are a few comments to strengthen this study.

  1. The definition of putative AAC (pAAC) is unclear and Table 1 may not be accurate. Although the authors find synaptic cartridges of RFP-labeled cells in the claustro-insular complex and the dorsal endopiriform nuclei, they still consider these cells as pAACs (not validated). The authors claim that without examining the presence of synaptic cartridges, RFP-labeled cells in the hypothalamus and the bed nuclei of the stria terminalis (BNST) are pAACs while those in the L4 of the somatosensory cortex in Pthlh;Nkx2.1;Ai65 mice are non-AACs. In Table 1, the BNST is supposed to contain AACs (validated), but in the text, the authors claim that RFP-labeled cells in the BNST are pAACs. Could the authors clarify how AACs, pAACs, and non-AACs are defined?

  2. The intersectional strategies presented in this study could also specifically capture developing AACs. If so, how early are AACs labeled in the brain? It would also be nice if the authors could add a simple schematic like Fig. 1a showing the time course of Pthlh expression.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation