Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.
Read more about eLife’s peer review process.Editors
- Reviewing EditorSonia SenTata Institute for Genetics and Society, Bangalore, India
- Senior EditorUtpal BanerjeeUniversity of California, Los Angeles, Los Angeles, United States of America
Reviewer #1 (Public Review):
Summary:
This study unveils a novel role for ferritin in Drosophila larval brain development. Furthermore, it pinpoints that the observed defects in larval brain development resulting from ferritin knockdown are attributed to impaired Fe-S cluster activity and ATP production. In addition, knocking down ferritin genes suppressed the formation of brain tumors induced by brat or numb RNAi in Drosophila larval brains. Similarly, iron deficiency suppressed glioma in the mice model. Overall, this is a well-conducted and novel study.
Strengths:
Thorough analyses with the elucidation of molecular mechanisms.
Weaknesses:
Some of the conclusions are not well supported by the results presented.
Reviewer #2 (Public Review):
Summary:
Zhixin and collaborators have investigated if the molecular pathways present in glia play a role in the proliferation, maintenance, and differentiation of Neural Stem Cells. In this case, Drosophila Neuroblasts are used as models. The authors find that neuronal iron metabolism modulated by glial ferritin is an essential element for Neuroblast proliferation and differentiation. They show that loss of glial ferritin is sufficient to impact on the number of neuroblasts. Remarkably, the authors have identified that ferritin produced in the glia is secreted to be used as an iron source by the neurons. Therefore iron defects in glia have serious consequences in neuroblasts and likely vice versa. Interestingly, preventing iron absorption in the intestine is sufficient to reduce NB number. Furthermore, they have identified Zip13 as another regulator of the process. The evidence presented strongly indicates that loss of neuroblasts is due to premature differentiation rather than cell death.
Strengths:
- Comprenhensive analysis of the impact of glial iron metabolism in neuroblast behaviour by genetic and drug-based approaches as well as using a second model (mouse) for some validations.
- Using cutting-edge methods such as RNAseq as well as very elegant and clean approaches such as RNAi-resistant lines or temperature-sensitive tools
- Goes beyond the state of the art highlighting iron as a key element in neuroblast formation as well as as a target in tumor treatments.
Weaknesses:
Although the manuscripts have clear strengths, there are also some strong weaknesses that need to be addressed.
- Some literature is missing
- In general, the authors succeeded but in some cases, the authors´ claims are not fully supported by the evidence presented and additional experiments are critical to discriminate among different hypotheses.
- Moreover, some potential flaws might be present in the analysis of cell death and mitochondrial iron.
Reviewer #3 (Public Review):
In this manuscript, Ma et al seek to identify stem cell niche factors. They perform an RNAi screen in glial cells and screen for candidates that support and maintain neuroblasts (NBs) in the developing fly brain. Through this, they identify two subunits of ferritin, which is a conserved protein that can store iron in cells in a non-toxic form and release it in a controlled manner when and where required. They present data to support the conclusion that ferritin produced in glia is released and taken up by NBs where it is utilised by enzymes in the Krebs cycle as well as in the electron transport chain. In its absence from glia, NBs are unable to generate sufficient energy for division and therefore prematurely differentiate via nuclear prospero resulting in small brains. The work will be of interest to those interested in neural stem cells and their non-cell autonomous control by niches.
The past decade has seen a growing appreciation of how glial cells support and maintain NBs during development. The authors' discovery of glial-derived ferritin providing essential iron atoms for energy production is interesting and important. They have employed a variety of genetic tools and assays to uncover how ferritin in glia might support NBs. This is particularly challenging because there are no direct ways of assaying for iron or energy consumption in a cell-specific manner.
There are however instances where conclusions are drawn to support the story being developed without considering the equally plausible alternative explanations that should ideally be addressed.
For example, the data supporting the transfer of ferritin from glia to NBs was weak given the misexpression system used; the Shi[ts] experiment was also not convincing (perhaps they have more representative images?).
The iron manipulation experiments are in the whole animal and it is likely that this affects general feeding behaviour, which is known to affect NB exit from quiescence and proliferative capacity. The loss of ferritin in the gut and iron chelators enhancing the NB phenotype are used as evidence that glia provide iron to NB to support their number and proliferation. Since the loss of NB is a phenotype that could result from many possible underlying causes (including low nutrition), this specific conclusion is one of many possibilities.
Similarly, knockdown of the FeS protein assembly components phenocopy glial ferritin knock down. Since iron is so important for the TCA and the ETC, this is not surprising, but the similarities in the two phenotypes seem insufficient to say that it's glial ferritin that's causing the lack of iron in the NB and therefore resulting in loss of NBs.
Pros RNAi will certainly result in an increase in NB numbers because the loss of pros results in an inability of NB progeny to differentiate. This (despite the slight increase in nuclear pros) is not sufficient to infer that glial ferritin knockdown results in premature differentiation of NBs via nuclear pros.
I recognise these are challenging to prove irrefutably, however, the frequency of such expansive interpretations of data is of concern.