Macro-scale patterns in functional connectivity associated with ongoing thought patterns and dispositional traits

  1. Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
  2. Department of Psychology, University of York, York, YO10 5DD, United Kingdom
  3. Department of Psychology, Queens University, Kingston, Ontario, Canada
  4. Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
  5. Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
  6. Center for the Developing Brain, Child Mind Institute, New York, New York
  7. Max Planck Research Group: Adaptive Memory, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
  8. Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
  9. Frontlab, Institut du Cerveau et de la Moelle épinière, UPMC UMRS 1127, Inserm U 1127, CNRS UMR 7225 Paris, France
  10. Department of Psychiatry and Behavioral Sciences, Stanford University, CA 94305, USA
  11. Department of Brain and Cognitive Sciences, University of Rochester, NY 14627, USA
  12. McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
  13. Day Clinic of Cognitive Neurology, Universitätsklinikum Leipzig, Leipzig, Germany
  14. MindBrainBody Institute, Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, 10099 Berlin, Germanyx2
  15. Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Jason Lerch
    University of Oxford, Oxford, United Kingdom
  • Senior Editor
    Jonathan Roiser
    University College London, London, United Kingdom

Reviewer #1 (Public Review):

Summary:
The authors ran an explorative analysis in order to describe how a "tri-partite" brain network model could describe the combination of resting fMRI data and individual characteristics. They utilized previously obtained fMRI data across four scanning runs in 144 individuals. At the end of each run, participants rated their patterns of thinking on 12 statements (short multi-dimensional experience sampling-MDES) using a 0-100% visual analog scale. Also, 71 personality traits were obtained on 21 questionnaires. The authors ran two separate principal component analyses (PCA) to obtain low dimensional summaries of the two individual characteristics (personality traits from questionnaires, and thought patterns from MDES). The dimensionality reduction of the fMRI data was done by means of gradient analysis, which was combined with Neurosynth decoding to visualize the functional axis of the gradients. To test the reliability of thought components across scanning time, intra-class correlation coefficients (ICC) were calculated for the thought patterns, and discriminability indices were calculated for whole gradients. The relationship between individual differences in traits, thoughts, and macro-scale gradients was tested with multivariate regression.

The authors found: a) reliability of thought components across the one hour of scanning, b) Gradient 1 differentiated between visual regions and DMN, Gradient 2 dissociated somatomotor from visual cortices, Gradient 3 differentiated the DMN from the fronto-parietal system, c) the associations between traits/thought patterns and brain gradients revealed significant effects of "introversion" and "specific internal" thought: "Introversion" was associated with variant parcels on the three gradients, with most of parcels belonging to the VAN and then to the DMN; and "Specific internal thought" was associated with variant parcels on the three gradients with most of parcels belonging to the DAN and then the visual. The authors conclude that interactions between attention systems and the DMN are important influences on ongoing thought at rest.

Strengths:
The study's strength lies in its attempt to combine brain activity with individual characteristics using state-of-the-art methodologies.

Weaknesses:
The study protocol in its current form restricts replicability. This is largely due to missing information on the MRI protocol and data preprocessing. The article refers the reader to the work of Mendes et al 2019 which is said to provide this information, but the paper should rather stand alone with all this crucial material mentioned here, as well. Also, effect sizes are provided only for the multiple multivariate regression of the inter-class correlations, which makes it difficult to appreciate the power of the other obtained results.

Reviewer #2 (Public Review):

The authors set out to draw further links between neural patterns observed at "rest" during fMRI, with their related thought content and personality traits. More specifically, they approached this with a "tri-partite network" view in mind, whereby the ventral attention network (VAN), the dorsal attention network (DAN), and the default mode network (DMN) are proposed to play a special role in ongoing conscious thought. They used a gradients approach to determine the low dimensional organisation of these networks. In concert, using PCA they reduced thought patterns captured at four time points during the scan, as well as traits captured from a large battery of questionnaires.

The main findings were that specific thought and trait components were related to variations in the organisation of the tri-partite networks, with respect to cortical gradients.

Strengths of the methods/results: Having a long (1 hr) resting state MRI session, which could be broken down into four separate scanning/sampling components is a strength. Importantly, the authors could show (via intra-class correlation coefficients) the similarity of thoughts and connectivity gradients across the entire session. Not only did this approach increase the richness of the data available to them, it speaks in an interesting way to the stability of these measures. The inclusion of both thought patterns during scanning along with trait-level dispositional factors is most certainly a strength, as many studies will often include either/or of these, rather than trying to reconcile across. Of the two main findings, the finding that detailed self-generated thought was associated with a decoupling of regions of DAN from regions in DMN was particularly compelling, in light of mounting literature from several fields that support this.

Weaknesses of the methods/results: Considering the richness of the thought and personality data, I was a little surprised that only two main findings emerged (i.e., a relationship with trait introversion, and a relationship with the "specific internal" thought pattern). I wondered whether, at least in part and in relation to traits, this might stem from the large and varied set of questionnaires used to discern the traits. These questionnaires mostly comprised personality/mood, but some sampled things that do not fall into that category (e.g., musicality, internet addition, sleep), and some related directly to spontaneous thought properties (e.g., mind wandering, musical imagery). It would be interesting to see what relationships would emerge by being more selective in the traits measured, and in the tools to measure them.

Taken together, the main findings are interesting enough. However, the real significance of this work, and its impact, lie in the richness of the approach: combing across fMRI, spontaneous thought, and trait-level factors. Triangulating these data has important potential for furthering our understanding of brain-behaviour relationship across different levels of organisation.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation