Light-adaptation clamp: a tool to predictably manipulate photoreceptor light responses

  1. Department of Physiology and Biophysics University of Washington, Seattle, WA 98195

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Stephen Baccus
    Stanford University, Stanford, United States of America
  • Senior Editor
    Tirin Moore
    Howard Hughes Medical Institute, Stanford University, Stanford, United States of America

Reviewer #1 (Public Review):

Summary:
This manuscript aims at a quantitative model of how visual stimuli, given as time-dependent light intensity signals, are transduced into electrical currents in photoreceptors of macaque and mouse retina. Based on prior knowledge of the fundamental biophysical steps of the transduction cascade and a relatively small number of free parameters, the resulting model is found to fairly accurately capture measured photoreceptor currents under a range of diverse visual stimuli and with parameters that are (mostly) identical for photoreceptors of the same type.

Furthermore, as the model is invertible, the authors show that it can be used to derive visual stimuli that result in a desired, predetermined photoreceptor response. As demonstrated with several examples, this can be used to probe how the dynamics of phototransduction affect downstream signals in retinal ganglion cells, for example, by manipulating the visual stimuli in such a way that photoreceptor signals are linear or have reduced or altered adaptation. This innovative approach had already previously been used by the same lab to probe the contribution of photoreceptor adaptation to differences between On and Off parasol cells (Yu et al, eLife 2022), but the present paper extends this by describing and testing the photoreceptor model more generally and in both macaque and mouse as well as for both rods and cones.

Strengths:
The presentation of the model is thorough and convincing, and the ability to capture responses to stimuli as different as white noise with varying mean intensity and flashes with a common set of model parameters across cells is impressive. Also, the suggested approach of applying the model to modify visual stimuli that effectively alter photoreceptor signal processing is thought-provoking and should be a powerful tool for future investigations of retinal circuit function. The examples of how this approach can be applied are convincing and corroborate, for example, previous findings that adaptation to ambient light in the primate retina, as measured by responses to light flashes, mostly originates in photoreceptors.

Weaknesses:
In the current form of the presentation, it doesn't become fully clear how easily the approach is applicable at different mean light levels and where exactly the limits for the model inversion are at high frequency. Also, accessibility and applicability by others could be strengthened by including more details about how parameters are fixed and what consensus values are selected.

Reviewer #2 (Public Review):

Summary:
This manuscript proposes a modeling approach to capture nonlinear processes of photocurrents in mammalian (mouse, primate) rod and cone photoreceptors. The ultimate goal is to separate these nonlinearities at the level of photocurrent from subsequent nonlinear processing that occurs in retinal circuitry. The authors devised a strategy to generate stimuli that cancel the major nonlinearities in photocurrents. For example, modified stimuli would generate genuine sinusoidal modulation of the photocurrent, whereas a sinusoidal stimulus would not (i.e., because of asymmetries in the photocurrent to light vs. dark changes); and modified stimuli that could cancel the effects of light adaptation at the photocurrent level. Using these modified stimuli, one could record downstream neurons, knowing that any nonlinearities that emerge must happen post-photocurrent. This could be a useful method for separating nonlinear mechanisms across different stages of retinal processing, although there are some apparent limitations to the overall strategy.

Strengths:
1. This is a very quantitative and thoughtful approach and addresses a long-standing problem in the field: determining the location of nonlinearities within a complex circuit, including asymmetric responses to different polarities of contrast, adaptation, etc.
2. The study presents data for two primary models of mammalian retina, mouse, and primate, and shows that the basic strategy works in each case.
3. Ideally, the present results would generalize to the work in other labs and possibly other sensory systems. How easy would this be? Would one lab have to be able to record both receptor and post-receptor neurons? Would in vitro recordings be useful for interpreting in vivo studies? It would be useful to comment on how well the current strategy could be generalized.

Weaknesses:
1. The model is limited to describing photoreceptor responses at the level of photocurrents, as opposed to the output of the cell, which takes into account voltage-dependent mechanisms, horizontal cell feedback, etc., as the authors acknowledge. How would one distinguish nonlinearities that emerge at the level of post-photocurrent processing within the photoreceptor as opposed to downstream mechanisms? It would seem as if one is back to the earlier approach, recording at multiple levels of the circuit (e.g., Dunn et al., 2006, 2007).
2. It would have been nice to see additional confirmations of the approach beyond what is presented in Figure 9. This is limited by the sample (n = 1 horizontal cell) and the number of conditions (1). It would have been interesting to at least see the same test at a dimmer light level, where the major adaptation mechanisms are supposed to occur beyond the photoreceptors (Dunn et al., 2007).

Reviewer #3 (Public Review):

Summary:
The authors propose to invert a mechanistic model of phototransduction in mouse and rod photoreceptors to derive stimuli that compensate for nonlinearities in these cells. They fit the model to a large set of photoreceptor recordings and show in additional data that the compensation works. This can allow the exclusion of photoreceptors as a source of nonlinear computation in the retina, as desired to pinpoint nonlinearities in retinal computation. Overall, the recordings made by the authors are impressive and I appreciate the simplicity and elegance of the idea. The data support the authors' conclusions but the presentation can be improved.

Strengths:
- The authors collected an impressive set of recordings from mouse and primate photoreceptors, which is very challenging to obtain.
- The authors propose to exploit mechanistic mathematical models of well-understood phototransduction to design light stimuli that compensate for nonlinearities.
- The authors demonstrate through additional experiments that their proposed approach works.

Weaknesses:
- The authors use numerical optimization for fitting the parameters of the photoreceptor model to the data. Recently, the field of simulation-based inference has developed methods to do so, including quantification of the uncertainty of the resulting estimates. Since the authors state that two different procedures were used due to the different amounts of data collected from different cells, it may be worthwhile to rather test these methods, as implemented e.g. in the SBI toolbox (https://joss.theoj.org/papers/10.21105/joss.02505). This would also allow them to directly identify dependencies between parameters, and obtain associated uncertainty estimates. This would also make the discussion of how well constrained the parameters are by the data or how much they vary more principled because the SBI uncertainty estimates could be used.

- In several places, the authors refer the reader to look up specific values e.g. of parameters in the associated MATLAB code. I don't think this is appropriate, important values/findings/facts should be in the paper (lines 142, 114, 168). I would even find the precise values that the authors measure interesting, so I think the authors should show them in a figure/table. In general, I would like to see also the average variance explained by different models summarized in a table and precise mean/median values for all important quantities (like the response amplitude ratios in Figures 6/9).

- If the proposed model is supposed to model photoreceptor adaptation on a longer time scale, I fail to see why this can be an invertible model. Could the authors explain this better? I suspect that the model is mainly about nonlinearities as the authors also discuss in lines 360ff.

- The important Figures 6-8 are very hard to read, as it is not easy to see what the stimulus is, the modified stimulus, the response with and without modification, what the desired output looks like, and what is measured for part B. Reworking these figures would be highly recommended.

- If I understand Figure 6 correctly, part B is about quantifying the relative size of the response to the little first flash to the little second flash. While clearly, the response amplitude of the second flash is only 50% for the second flash compared to the first flash in primate rod and cones in the original condition, the modified stimulus seems to overcompensate and result in 130% response for the second flash. How do the authors explain this? A similar effect occurs in Figure 9, which the authors should also discuss.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation