Development of Ca2+ micro-waves travelling through hippocampus following GCaMP transduction.
a: Experimental protocol to examine CA1 neuronal activity using two-photon imaging following adenoviral transduction of genetically encoded Ca2+ indicators. b: Immunohistochemical sections following last imaging session. GCaMP6s (AAV1.syn.GCaMP6s.SV40, addgene #100843) expression throughout the ipsilateral hippocampus and projection pathways in the contralateral hippocampus. c: Two-photon Ca2+ imaging of FOV in CA1 at 4wks p.i. showing aberrant Ca2+ micro-waves (see also Supplementary video 1). Magnified inset shows 3 colored neuronal subgroups (blue, orange, magenta) based on their spatial vicinity from a total population of 100 identified neurons (green). right: time series of two-photon Ca2+ imaging FOVs showing two Ca2+ micro-waves, the first at 0 sec, the second appearing at 6 sec (asterisk). The second wave progresses through FOV over dozens of seconds. d: Raster-plot of individual neuronal Ca2+ activity (ΔF/F, 1min moving window, traces max-normalized per neuron) from neighboring subgroups (colors correspond to c). Asterisk (same as in c): a Ca2+ micro-wave advances through neighboring neuronal subgroups. e: Occurrence rate of aberrant Ca2+ micro-waves with increasing expression time, following viral transduction of AAV1.syn.GCaMP6s.SV40 in mature C57BL6 wild-type animals. n.d. = none detected. f: Two-photon Ca2+ imaging FOV in the visual cortex at 6wks p.i. (left) with normal sparse spontaneous Ca2+ activity and no detected Ca2+ micro-waves (right; raster plot of ΔF/F, 1min moving window, traces max-normalized per neuron).