Transcriptional inhibition after irradiation occurs preferentially at highly expressed genes in a manner dependent on cell cycle progression

  1. Weill Cornell Medicine, Department of Pathology and Laboratory Medicine, New York, NY 10065, USA
  2. Basic and Translational Research Division, Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115, USA
  3. Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA

Editors

  • Reviewing Editor
    Yamini Dalal
    National Cancer Institute, Bethesda, United States of America
  • Senior Editor
    Yamini Dalal
    National Cancer Institute, Bethesda, United States of America

Reviewer #1 (Public Review):

This manuscript by Tyler and colleagues describes a thorough analysis of IR-induced changes in nascent RNA transcripts, and a genome-wide screening effort to identify the responsible proteins. The findings extend previous work describing DNA damage-induced transcriptional repression from DNA breaks in cis to bulk genomic DNA damage. A significant discovery is the inability of arrested cells to undergo DNA damage-induced gene silencing, which, at least at the rDNA locus, is attributed to an inability to mediate ATM-induced transcriptional repression. While the findings add to our knowledge of how DNA damage affects gene expression, there are several limitations to the current study that remain inadequately addressed. In addition, some of the proposed conclusions seem speculative and should be marked as such, omitted, or experimentally supported.

Two major concerns are as follows:

  1. The CIRSPR screen designed to detect regulators of damage-induced transcriptional repression is based on EU incorporation following a 7-day selection of stable knockout cells. As the authors point out, cell cycle arrest reduces rDNA transcription on its own. The screen, which assesses changes in sgRNA distribution in EU high cells, is thus likely to be dominated by factors that affect cell cycle progression. This is exemplified in the analyses of top hits related to neddylation. The screen's limitations in terms of identifying DDR effectors of damage-induced silencing need to be clearly stated.

  2. The authors confirm previous findings of DNA damage-induced repression of rDNA and histone gene transcription. The authors propose that these highly transcribed genes are more susceptible to silencing than the bulk of protein-coding genes and propose a global damage-induced signaling event that is independent of DNA breaks in cis. While this is possible, it is not demonstrated in this manuscript, and the authors should acknowledge alternative explanations. For example, the loci found to be repressed by bulk IR are highly repetitive gene arrays that tend to form nuclear sub-compartments (nucleoli, histone bodies). As such, their likelihood of being in the vicinity of DNA damage is high, at least for a fraction of gene copies. The findings, therefore, remain consistent with cis-induced silencing. Moreover, silencing may spread through the relevant nuclear sub-compartments, consistent with the formation of DNA damage compartments described recently (PMID: 37853125).

Other comments:

  1. The statement that silencing is due to transcription initiation rather than elongation is not sufficiently supported by the data. Could equivalent nascent transcript reduction not be the result of the suppression of elongating RNA PolII? To draw the proposed conclusion, the authors would need to demonstrate that RNA PolII initiation is altered, using RNA PollII ChIP and/or analysis of relevant RNA PolII phosphorylation patterns.

  2. The lack of rDNA silencing in arrested cells is interesting, though the underlying mechanism remains unclear. To further corroborate the proposed defect in ATM-mediated signaling, the authors should look directly at ATM and Treacle phosphorylation upstream of TOPBP1.

  3. The "change in relative heights of the EU low (G1) and EU high (S/G2) peaks" in Figures 5D, 5E, and 6B is central to the proposed model of transcriptional changes being affected by cell cycle arrest. These differences should be visualized more clearly and quantified across independent experiments. Ideally, the cell cycle stage should be dissected as in Figure 2B. How do the authors envision cell cycle arrest triggers the defect in transcriptional silencing?

Reviewer #2 (Public Review):

Summary:
In this manuscript, the authors attempted to study mechanisms of transcription inhibition in cells treated with IR. They observed that, unlike histone chaperone HIRA-dependent transcription inhibition during UV-induced damage, IR-induced transcription inhibition does not depend on HIRA. Through the CRISPR/Cas9 screen, they identified protein neddylation is important for transcription inhibition. By sequencing nascent RNA, they observed that down-regulated transcripts upon IR treatment are largely highly transcribed genes including histone genes and rDNA.

Strengths:
The authors utilized comprehensive approaches to fill in the knowledge gap of IR-induced transcription inhibition.

Weaknesses:
it is not clear that inhibition of histone genes by IR is due to a reduction of S phase progression.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation