Taste triggers a homeostatic temperature control in Drosophila

  1. Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA 95616
  2. Department of Entomology and Nematology, University of California, Davis, Davis, CA 95616
  3. Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Ilona Grunwald Kadow
    University of Bonn, Bonn, Germany
  • Senior Editor
    Claude Desplan
    New York University, New York, United States of America

Reviewer #1 (Public Review):

Summary:
This paper presents valuable findings that gustation and feeding state influence the preferred environmental temperature preference in flies. Interestingly, the authors showed that by refeeding starved animals with the non-nutritive sugar sucralose, they are able to tune their preference towards a higher temperature in addition to nutrient-dependent warm preference. The authors show that temperature-sensing and sweet-sensing gustatory neurons (SGNs) are involved in the former but not the latter. In addition, their data indicate that peptidergic signals involved in internal state and clock genes are required for taste-dependent warm preference behavior.

The authors made an analogy of their results to the cephalic phase response (CPR) in mammals where the thought, sight, and taste of food prepare the animal for the consumption of food and nutrients. They further linked this behavior to core regulatory genes and peptides controlling hunger and sleep in flies having homologues in mammals. These valuable behavioral results can be further investigated in flies with the advantage of being able to dissect the neural circuitry underlying CPR and nutrient homeostasis.

Strengths:
(1) The authors convincingly showed that tasting is sufficient to drive warm temperature preference behavior in starved flies and that it is independent of nutrient-driven warm preference.

(2) By using the genetic manipulation of key internal sensors and genes controlling internal feeding and sleep states such as DH44 neurons and the per genes for example, the authors linked gustation and temperature preference behavior control to the internal state of the animal.

Weaknesses:
(1) The title is somewhat misleading, as the term homeostatic temperature control linked to gustation only applies to starved flies.

(2) The authors used a temperature preference assay and refeeding for 5 minutes, 10 minutes, and 1 hour. Experimentally, it makes a difference if the flies are tested immediately after 10 minutes or at the same time point as flies allowed to feed for 1 hour. Is 10 minutes enough to change the internal state in a nutrition-dependent manner? Some of the authors' data hint at it (e.g. refeeding with fly food for 10 minutes), but it might be relevant to feed for 5/10 minutes and wait for 55/50min to do the assays at comparable time points.

(3) A figure depicting the temperature preference assay in Figure 1 would help illustrate the experimental approach. It is also not clear why Figure 1E is shown instead of full statistics on the individual panels shown above (the data is the same).

(4) The authors state that feeding rate and amount were not changed with sucralose and glucose. However, the FLIC assay they employed does not measure consumption, so this statement is not correct, and it is unclear if the intake of sucralose and glucose is indeed comparable. This limits some of the conclusions.

(5) The authors make a distinction between taste-induced and nutrient-induced warm preference. Yet the statistics in most figures only show the significance between the starved and refed flies, not the fed controls. As the recovery is in many cases incomplete and used as a distinction of nutritive vs non-nutritive signals (see Figure 1E) it will be important to also show these additional statistics to allow conclusions about how complete the recovery is.

(6) The starvation period used is ranging from 1 to 3 days, as in some cases no effect was seen upon 1 day of starvation (e.g. with clock genes or temperature sensing neurons). While the authors do provide a comparison between 18-21 and 26-29 hours old flies in Figure S1, a comparison for 42-49 and 66-69 hours of starvation is missing. This also limits the conclusion as the "state" of the animal is likely quite different after 1 day vs. 3 days of starvation and, as stated by the authors, many flies die under these conditions.

(7) In Figure 2, glucose-induced refeeding was not tested in Gr mutants or silenced animals, which would hint at post-ingestive recovery mechanisms related to nutritional intake. This is only shown later (in Figure S3) but I think it would be more fitting to address this point here. The data presented in Figure S3 regarding the taste-evoked vs nutrient-dependent warm preference is quite important while in some parts preliminary. It would nonetheless be justified to put this data in the main figures. However, some of the conclusions here are not fully supported, in part due to different and low n numbers, which due to the inherent variability of the behavior do not allow statistically sound conclusions. The authors claim that sweet GRNs are only involved in taste-induced warm preference, however, glucose is also nutritive but, in several cases, does not rescue warm preference at all upon removal of GRN function (see Figures S3A-C). This indicates that the Gal4 lines and also the involved GRs are potentially expressed in tissues/neurons required for internal nutrient sensing.

(8) In Figure 4, fly food and glucose refeeding do not fully recover temperature preference after refeeding. With the statistical comparison to the fed control missing, this result is not consistent with the statement made in line 252. I feel this is an important point to distinguish between state-dependent and taste/nutrition-dependent changes.

(9) The conclusion that clock genes are required for taste-evoked warm preference is limited by the observation that they ingest less sucralose. In addition, the FLIC assay does not allow conclusions about the feeding amount, only the number of food interactions. Therefore, I think these results do not allow clear-cut conclusions about the impact of clock genes in this assay.

(10) CPR is known to be influenced by taste, thought, smell, and sight of food. As the discussion focused extensively on the CPR link to flies it would be interesting to find out whether the smell and sight of food also influence temperature preference behavior in animals with different feeding states.

(11) In the discussion in line 410ff the authors claim that "internal state is more likely to be associated with taste-evoked warm preference than nutrient-induced warm preference." This statement is not clear to me, as neuropeptides are involved in mediating internal state signals, both in the brain itself as well as from gut to brain. Thus, neuropeptidergic signals are also involved in nutrient-dependent state changes, the authors might just not have identified the peptides involved here. The global and developmental removal of these signals also limits the conclusions that can be drawn from the experiments, as many of these signals affect different states, circuits, and developmental progression.

Reviewer #2 (Public Review):

Animals constantly adjust their behavior and physiology based on internal states. Hungry animals, desperate for food, exhibit physiological changes immediately upon sensing, smelling, or chewing food, known as the cephalic phase response (CPR), involving processes like increased saliva and gastrointestinal secretions. While starvation lowers body temperature, the mechanisms underlying how the sensation of food without nutrients induces behavioral responses remain unclear. Hunger stress induces changes in both behavior and physiological responses, which in flies (or at least in Drosophila melanogaster) leads to a preference for lower temperatures, analogous to the hunger-driven lower body temperature observed in mammals. In this manuscript, the authors have used Drosophila melanogaster to investigate the issue of whether taste cues can robustly trigger behavioral recovery of temperature preference in starving animals. The authors find that food detection triggers a warm preference in flies. Starved flies recover their temperature preference after food intake, with a distinction between partial and full recovery based on the duration of refeeding. Sucralose, an artificial sweetener, induces a warm preference, suggesting the importance of food-sensing cues. The paper compares the effects of sucralose and glucose refeeding, indicating that both taste cues and nutrients contribute to temperature preference recovery. The authors show that sweet gustatory receptors (Grs) and sweet GRNs (Gustatory Receptor Neurons) play a crucial role in taste-evoked warm preference. Optogenetic experiments with CsChrimson support the idea that the excitation of sweet GRNs leads to a warm preference. The authors then examine the internal state's influence on taste-evoked warm preference, focusing on neuropeptide F (NPF) and small neuropeptide F (sNPF), analogous to mammalian neuropeptide Y. Mutations in NPF and sNPF result in a failure to exhibit taste-evoked warm preference, emphasizing their role in this process. However, these neuropeptides appear not to be critical for nutrient-induced warm preference, as indicated by increased temperature preference during glucose and fly food refeeding in mutant flies. The authors also explore the role of hunger-related factors in regulating taste-evoked warm preference. Hunger signals, including diuretic hormone (DH44) and adipokinetic hormone (AKH) neurons, are found to be essential for taste-evoked warm preference but not for nutrient-induced warm preference. Additionally, insulin-like peptides 6 (Ilp6) and Unpaired3 (Upd3), related to nutritional stress, are identified as crucial for taste-evoked warm preference. The investigation then extends into circadian rhythms, revealing that taste-evoked warm preference does not align with the feeding rhythm. While flies exhibit a rhythmic feeding pattern, taste-evoked warm preference occurs consistently, suggesting a lack of parallel coordination. Clock genes, crucial for circadian rhythms, are found to be necessary for taste-evoked warm preference but not for nutrient-induced warm preference.

Strengths:
A well-written and interesting study, investigating an intriguing issue. The claims, none of which to the best of my knowledge controversial, are backed by a substantial number of experiments.

Weakness:
The experimental setup used and the procedures for assessing the temperature preferences of flies are rather sparingly described. Additional details and data presentation would enhance the clarity and replicability of the study. I kindly request the authors to consider the following points: i) A schematic drawing or diagram illustrating the experimental setup for the temperature preference assay would greatly aid readers in understanding the spatial arrangement of the apparatus, temperature points, and the positioning of flies during the assay. The drawing should also be accompanied by specific details about the setup (dimensions, material, etc). ii) It would be beneficial to include a visual representation of the distribution of flies within the temperature gradient on the apparatus. A graphical representation, such as a heatmaps or histograms, showing the percentage of flies within each one-degree temperature bin, would offer insights into the preferences and behaviors of the flies during the assay. In addition to the detailed description of the assay and data analysis, the inclusion of actual data plots, especially for key findings or representative trials, would provide readers with a more direct visualization of the experimental outcomes. These additions will not only enhance the clarity of the presented information but also provide the reader with a more comprehensive understanding of the experimental setup and results. I appreciate the authors' attention to these points and look forward to the potential inclusion of these elements in the revised manuscript.

Reviewer #3 (Public Review):

Summary:
The manuscript by Yujiro Umezaki and colleagues aims to describe how taste stimuli influence temperature preference in Drosophila. Under starvation flies display a strong preference for cooler temperatures than under fed conditions that can be reversed by refeeding, demonstrating the strong impact of metabolism on temperature preference. In their present study, Umezaki and colleagues observed that such changes in temperature preference are not solely triggered by the metabolic state of the animal but that gustatory circuits and peptidergic signalling play a pivotal role in gustation-evoked alteration in temperature preference.

The study of Umezaki is definitively interesting and the findings in this manuscript will be of interest to a broad readership.

Strengths:
The authors demonstrate interesting new data on how taste input can influence temperature preference during starvation. They propose how gustatory pathways may work together with thermosensitive neurons, peptidergic neurons and finally try to bridge the gap between these neurons and clock genes. The study is very interesting and the data for each experiment alone are very convincing.

Weaknesses:
In my opinion, the authors have opened many new questions but did not fully answer the initial question - how do taste-sensing neurons influence temperature preferences? What are the mechanisms underlying this observation? Instead of jumping from gustatory neurons to thermosensitive neurons to peptidergic neurons to clock genes, the authors should have stayed within the one question they were asking at the beginning. How does sugar sensing influence the physiology of thermos-sensation in order to change temperature preference? Before addressing all the following questions of the manuscript the authors should first directly decipher the neuronal interplay between these two types of neurons.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation