Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.
Read more about eLife’s peer review process.Editors
- Reviewing EditorPatrik VerstrekenKU Leuven, Leuven, Belgium
- Senior EditorDavid JamesUniversity of Sydney, Sydney, Australia
Reviewer #1 (Public Review):
Summary:
Dong et al here have studied the impact of the small Ras-like GTPase Rab10 on the exocytosis of dense core vesicles (DVC), which are important mediators of neuropeptide signaling in the brain. They use optical imaging to show that lentiviral depletion of Rab10 in mouse hippocampal neurons in culture independent of the established defects in neurite outgrowth hamper DCV exocytosis. They further demonstrate that such defects are paralleled by changes in ER morphology and defective ER-based calcium buffering as well as reduced ribosomal protein expression in Rab10-depleted neurons. Re-expression of Rab10 or supplementation of exogenous L-leucine to restore defective neuronal protein synthesis rescues impaired DCV secretion. Based on these results they propose that Rab10 regulates DCV release by maintaining ER calcium homeostasis and neuronal protein synthesis.
Strengths:
This work provides interesting and potentially important new insights into the connection between ER function and the regulated secretion of neuropeptides via DCVs. The authors combine advanced optical imaging with light and electron microscopy, biochemistry, and proteomics approaches to thoroughly assess the effects of Rab10 knockdown at the cellular level in primary neurons. The proteomic dataset provided may be valuable in facilitating future studies regarding Rab10 function. This work will thus be of interest to neuroscientists and cell biologists.
Weaknesses:
While the main conclusions of this study are comparably well supported by the data, I see three major weaknesses:
(1) For some of the data the statistical basis for analysis remains unclear. I.e. is the statistical assessment based on N= number of experiments or n = number of synapses, images, fields of view etc.? As the latter cannot be considered independent biological replicates, they should not form the basis of statistical testing.
(2) As it stands the paper reports on three partially independent phenotypic observations, the causal interrelationship of which remains unclear. Based on prior studies (e.g. Mercan et al 2013 Mol Cell Biol; Graves et al JBC 1997) it is conceivable that defective ER-based calcium signaling and the observed reduction in protein synthesis are causally related. For example, ER calcium release is known to promote pS6K1 phosphorylation, a major upstream regulator of protein synthesis and ribosome biogenesis. Conversely, L-leucine supplementation is known to trigger calcium release from ER stores via IP3Rs. Given the reported impact of Rab10 on axonal transport of autophagosomes and, possibly, lysosomes via JIP3/4 or other mediators (see e.g. Cason and Holzbaur JCB 2023) and the fact that mTORC1, the alleged target of leucine supplementation, is located on lysosomes, which in turn form membrane contacts with the ER, it seems worth analyzing whether the various phenotypes observed are linked at the level of mTORC1 signaling.
(3) The claimed lack of effect of Rab10 depletion on SV exocytosis is solely based on very strong train stimulation with 200 Aps, a condition not very well suited to analyze defects in SV fusion. The conclusion that Rab10 loss does not impact SV fusion thus seems premature.
Reviewer #2 (Public Review):
Summary:
In this paper, the authors assess the function of Rab10 in dense core vesicle (DCV) exocytosis using RNAi and cultured neurons. The author provides evidence that their knockdown (KD) is effective and provides evidence that DCV is compromised. They also perform proteomic analysis to identify potential pathways that are affected upon KD of Rab10 that may be involved in DCV release. Upon focusing on ER morphology and protein synthesis, the authors conclude that defects in protein synthesis and ER Ca2+ homeostasis contributes to the DVC release defect upon Rab10 KD. The authors claim that Rab10 is not involved in synaptic vesicle (SV) release and membrane homeostasis in mature neurons.
Strengths:
The data related to Rab10's role in DCV release seems to be strong and carried out with rigor. While the paper lacks in vivo evidence that this gene is indeed involved in DCV in a living mammalian organism, I feel the cellular studies have value. The identification of ER defect in Rab10 manipulation is not truly novel but it is a good conformation of studies performed in other systems. The finding that DCV release defect and protein synthesis defect seen upon Rab10 KD can be significantly suppressed by Leucine supplementation is also a strength of this work.
Weaknesses:
The data showing Rab10 is NOT involved in SV exocytosis seems a bit weak to me. Since the proteomic analysis revealed so many proteins that are involved in SV exo/encodytosis to be affected upon Rab10, it is a bit strange that they didn't see an obvious defect. Perhaps this could have been because of the protocol that the authors used to trigger SV release (I am not an E-phys expert but perhaps this could have been a 'sledge-hammer' manipulation that may mask any subtle defects)? Perhaps the authors can claim that DCV is more sensitive to Rab10 KD than SV, but I am not sure whether the authors should make a strong claim about Rab10 not being important for SV exocytosis.
Also, the authors mention "Rab10 does not regulate membrane homeostasis in mature neurons" but I feel this is an overstatement. Since the authors only performed KD experiments, not knock-out (KO) experiments, I believe they should not make any conclusion about it not being required, especially since there is some level of Rab10 present in their cells. If they want to make these claims, I believe the authors will need to perform conditional KO experiments, which are not performed in this study.
Finally, the authors show that protein synthesis and ER Ca2+ defects seem to contribute to the defect but they do not discuss the relationship between the two defects. If the authors treat the Rab10 KD cells with both ionomycin and Leucine, do they get a full rescue? Or is one defect upstream of the other (e.g. can they see rescue of ER morphology upon Leucine treatment)? While this is not critical for the conclusions of the paper, several additional experiments could be performed to clarify their model, especially considering there is no clear model that explains how Rab10, protein synthesis, ER homeostasis, and Ca2+ are related to DCV (but not SV) exocytosis.
Reviewer #3 (Public Review):
In the submitted manuscript, Dong and colleagues set out to dissect the role of the Rab10 small GTPase on the intracellular trafficking and exocytosis of dense core vesicles (DCVs). While the authors have already shown that Rab3 plays a central role in the exocytosis of DVC in mammalian neurons, the roles of several other Rab-members have been identified genetically, but their precise mechanism of action in mammalian neurons remains unclear. In this study, the authors use a carefully designed and thoroughly executed series of experiments, including live-cell imaging, functional calcium-imaging, proteomics, and electron microscopy, to identify that DCV secretion upon Rab10 depletion in adult neurons is primarily a result of dysregulated protein synthesis and, to a lesser extent, disrupted intracellular calcium buffering. Given that the full deletion of Rab10 has a deleterious effect on neurons and that Rab10 has a major role in axonal development, the authors cautiously employed the knock-down strategy from 7 DIV, to focus on the functional impact of Rab10 in mature neurons. The experiments in this study were meticulously conducted, incorporating essential controls and thoughtful considerations, ensuring rigorous and comprehensive results.