Peer review process
Revised: This Reviewed Preprint has been revised by the authors in response to the previous round of peer review; the eLife assessment and the public reviews have been updated where necessary by the editors and peer reviewers.
Read more about eLife’s peer review process.Editors
- Reviewing EditorRandy StockbridgeUniversity of Michigan, Ann Arbor, United States of America
- Senior EditorKenton SwartzNational Institute of Neurological Disorders and Stroke, Bethesda, United States of America
Reviewer #1 (Public Review):
The current manuscript revisits previous reports in the literature. The human Pannexin 1 channel is regulated by phosphorylation at two residues by Src kinase. From this series of experiments, the authors conclude that PANX-1 is not phosphorylated at these residues.
The biggest strength of the manuscript is the comprehensiveness of the approach. The authors recapitulate prior experiments in the literature and also add a series of new, orthogonal experiments that all examine the claim of PANX-1 phosphorylation. The breadth of the reported experiments extends over multiple cell lines and protein constructs, in vitro purified proteins, mass spec, different phosphorylation detection reagents and antibodies, and functional electrophysiology assays that show that the addition of Src does not impact gating. The combined weight of all these data strongly suggests that the field should re-examine the claim that PANX-1 is regulated by phosphorylation at Y199 and Y309.
Another strength is that the authors go beyond simply showing that the antibodies do not recognize phosphorylated PANX-1. They also provide potential mechanisms for how the antibodies may be misleading. Both antibodies recognize phosphorylated Src-1. In the case of anti-PANX1-pY308, the authors provide solid mutagenesis evidence that the antibody also weakly recognizes a non-phosphorylated epitope of PANX1 in the same region as the tyrosine. This helps make a convincing case.
Such experiments, while not glamorous, have great practical importance for developing an accurate understanding of how Pannexin channels are regulated.
Reviewer #2 (Public Review):
The widely distributed pannexin 1 (PANX1) is an ATP-permeable channel that plays an important role in intercellular communication and has been implicated in various pathophysiological processes and diseases. Previous studies have demonstrated that PANX1 can be phosphorylated at two molecular sites via the non-receptor kinase Src, thereby leading to channel opening and ATP release. In this paper, the authors used a variety of methods to detect tyrosine phosphorylation modification of PANX1 channel protein, however, their results showed that commercially available antibodies against the two phosphorylation sites used in previous studies did not work well, in other words, phosphorylation changes in PANX1 could not be detected by those antibodies. Therefore, the authors call for the re-examination and evaluation of previous research results.
In general, this is a meticulous study, using different detection methods and different expression systems.
Reviewer #3 (Public Review):
The manuscript by Ruan et al. addresses an important issue in Panx1 research, i.e. the activation of the channel formed by Panx1 via protein phosphorylation. If the authors' conclusions are correct, the previous claims for Panx1 phosphorylation on the basis of the commercial anti-phospho-Panx1 antibodies would be in question.
This is a very detailed and comprehensive analysis making use of state-of-the-art techniques, including mass spectrometry and phos-tag gel electrophoresis.
In general, the study is well-controlled as relating to negative controls.
The value of this manuscript is, that it could spawn new, more function-oriented studies on the activation of Panx1 channels.
The weaknesses identified previously are reproduced below:
Weaknesses:
Although the manuscript addresses an important issue, the activation of the ATP-release channel Panx1 by protein phosphorylation, the data provided do not support the firm conclusion that such activation does not exist. The failure to reproduce published data obtained with commercial anti-phospho Panx1 antibodies can only be of limited interest for a subfield.
(1) The title claiming that "Panx1 is NOT phosphorylated..." is not justified by the failure to reproduce previously published data obtained with these antibodies. If, as claimed, the antibodies do not recognize Panx1, their failure cannot be used to exclude tyrosine phosphorylation of the Panx1 protein. There is no positive control for the antibodies.
(2) The authors claim that exogenous SRC expression does not phosphorylate Y198. DeLalio et al. 2019 show that Panx1 is constitutively phosphorylated at Y198, so an effect of exogenous SRC expression is not necessarily expected.
(3) The authors argue that the GFP tag of Panx1at the COOH terminus does not interfere with folding since the COOH modified (thrombin cleavage site) Panx1 folds properly, forming an amorphous glob in the cryo-EM structure. However, they do not show that the COOH-modified Panx1 folds properly. It may not, because functional data strongly suggest that the terminal cysteine dives deep into the pore. For example, the terminal cysteine, C426, can form a disulfide bond with an engineered cysteine at position F54 (Sandilos et al. 2012).
(4) The authors dismiss the additional arguments for tyrosine phosphorylation of Panx1 given by the various previous studies on Panx1 phosphorylation. These studies did not, as implied, solely rely on the commercial anti-phospho-Panx1 antibodies, but also presented a wealth of independent supporting data. Contrary to the authors' assertion, in the previous papers the pY198 and pY308 antibodies recognized two protein bands in the size range of glycosylated and partial glycosylated Panx1.
(5) A phosphorylation step triggering channel activity of Panx1 would be expected to occur exclusively on proteins embedded in the plasma membrane. The membrane-bound fraction is small in relation to the total protein, which is particularly true for exogenously expressed proteins. Thus, any phosphorylated protein may escape detection when total protein is analyzed. Furthermore, to be of functional consequence, only a small fraction of the channels present in the plasma membrane need to be in the open state. Consequently, only a fraction of the Panx1 protein in the plasma membrane may need to be phosphorylated. Even the high resolution of mass spectroscopy may not be sufficient to detect phosphorylated Panx1 in the absence of enrichment processes.
(6) In the electrophysiology experiments described in Figure 7, there is no evidence that the GFP-tagged Panx1 is in the plasma membrane. Instead, the image in Figure 7a shows prominent fluorescence in the cytoplasm. In addition, there is no evidence that the CBX-sensitive currents in 7b are mediated by Panx1-GFP and are not endogenous Panx1. Previous literature suggests that the hPanx1 protein needs to be cleaved (Chiu et al. 2014) or mutated at the amino terminus (Michalski et al 2018) to see voltage-activated currents, so it is not clear that the currents represent hPANX1 voltage-activated currents.
Note from the editors: The authors provided a rebuttal to the latest review, but no additional data, so we encourage readers to read the concerns and the author responses.