Distributed uncertainty-modulated prediction error computation in cortical circuits
A: A person who learned that buses are unreliable has a prior expectation, which can be described by a wide Gaussian distribution of expected bus arrival times. When the bus does not arrive at the scheduled time, this person is not surprised and remains calm, as everything happens according to their model of the world. On the other hand, a person who learned that buses are punctual, which can be described by a narrow distribution of arrival times, may notice that the bus is late and get nervous, as they expected the bus to be punctual. This person can learn from this experience. If they always took this particular bus, and their uncertainty estimate is accurate, the prediction error could indicate that the bus schedule changed. B: Models of uncertainty representation in cortex. Some models suggest that uncertainty is only represented in higher-level areas concerned with decision-making (left). In contrast, we propose that uncertainty is represented at each level of the cortical hierarchy (right, shown is the visual hierarchy as an example). C: a mouse learns the association between a sound (a) and a whisker deflection (s). The posterior parietal cortex (PPC) receives inputs from both somatosensory and auditory cortex. D: The whisker stimulus intensities are drawn from a Gaussian distribution with mean µ and standard deviation σ. E: Negative (left) and positive (right) prediction error circuit consisting of three cell types: layer 2/3 pyramidal cells (triangle), somatostatin-positive interneurons (SST, circle) and parvalbumin-positive interneurons (PV). SSTs represent the mean prediction in the postive circuit and the stimulus in the negative circuit, and PVs represent the variance.