Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.
Read more about eLife’s peer review process.Editors
- Reviewing EditorBrice BathellierCentre National de la Recherche Scientifique, Paris, France
- Senior EditorLaura ColginUniversity of Texas at Austin, Austin, United States of America
Reviewer #1 (Public Review):
Summary:
Wang and colleagues present a study aimed at demonstrating the feasibility of repeated ultrasound localization microscopy (ULM) recording sessions on mice chronically implanted with a cranial window transparent to ultrasound. They provided quantitative information on their protocol, such as the required number of contrast-enhancing microbubbles (MBs) to get a clear image of the vasculature of a brain coronal section. Also, they quantified the co-registration quality over time-distant sessions and the vasodilator effect of isoflurane.
Strengths:
The study showed a remarkable performance in recording precisely the same brain coronal section over repeated imaging sessions. In addition, it sheds light on the vasodilator effect of isoflurane (an anesthetic whose effects are not fully understood) on the different brain vasculature compartments, although, as the authors stated, some insights in this aspect have already been published with other imaging techniques. The experimental setting and protocol are very well described.
Weaknesses:
While the title is fair with respect to the data shown, in the summary and the rest of the paper, the comparison between anesthetized and awake conditions is systematically stated, while more caution should be used.
First, isoflurane is one of the (many) anesthetics commonly used in pre-clinical research, and its effect on the brain vasculature cannot be generalized to all the anesthetics. Indeed, other anesthesia approaches do not produce evident vasodilation; see ketamine + medetomidine mixtures. Second, the imaged awake state is head-fixed and body-constrained in mice. A condition that can generate substantial stress in the animals. In this study, there is no evaluation of the stress level of the mice. In addition, the awake imaging sessions were performed a few minutes after the mouse woke up from isoflurane induction, which is necessary to inject the MB bolus. It is known that the vasodilator effects of isoflurane last a long time after its withdrawal. This aspect would have influenced the results, eventually underestimating the difference with respect to the awake state.
These limitations should be clearly described in the Discussion.
Looking at Figure 2e, it takes more than 5' to reach the 5 Millions MB count useful for good imaging. However, the MB count per pixel drops to a few % at that time. This information tells me that (i) repeated measurements are feasible but with limited brain coverage since a single 'wake up' is needed to acquire a single brain section and (ii) this approach cannot fit the requirements of functional ULM that requires to merge the responses to multiple stimuli to get a complete functional image. Of course, a chronic i.v. catheter would fix the issue, but this configuration is not trivial to test in the experimental setup proposed by the authors, hindering the extension of the approach to fULM.
Statistics are often poor or not properly described. The legend and the text referring to Figure 2 do not report any indication of the number of animals analyzed. I assume it is only one, which makes the findings strongly dependent on the imaging quality of THAT mouse in THAT experiment. Three mice have been displayed in Figure 3, as reported in the text, but it is not clear whether it is a mouse for each shown brain section. Figure 5 reports quantitative data on blood vessels in awake VS isoflurane states but: no indication about the number of tested mice is provided, nor the number of measured blood vessels per type and if statistics have been done on mice or with a multivariate method. Also, a T-test is inappropriate when the goal is to compare different brain regions and blood vessel types. Similar issues partially apply to Figure 6, too.
Reviewer #2 (Public Review):
Summary:
The authors present a very interesting collection of methods and results using brain ultrasound localization microscopy (ULM) in awake mice. They emphasize the effect of the level of anesthesia on the quantifiable elements assessable with this technique (i.e. vessel diameter, flow speed, in veins and arteries, area perfused, in capillaries) and demonstrate the possibility of achieving longitudinal cerebrovascular assessment in one animal during several weeks with their protocol.
Strengths:
Even if the methods elements considered separately are not new (brain ULM in rodents, setup for longitudinal awake imaging similar to those used in fUS imaging, quantification of vessel diameters/bubble flow/vessel area), when masterfully combined as it is done in this paper, they answer two questions that have been long-running in the community: what is the impact of anesthesia on the parameters measured by ULM (and indirectly in fUS and other techniques)? Is it possible to achieve ULM in awake rodents for longitudinal imaging? The authors answer quite exhaustively the first question. The manuscript is well-constructed and well-written, and the graphics are appealing.
Weaknesses:
The only major comment (calling for further work) I would like to make is the relative weakness of the manuscript regarding longitudinal imaging (mostly Figure 6), compared to the exhaustive review of the effect of isoflurane on the vasculature (3 rats, 3 imaging planes, quantification on a large number of vessels, in 9 different brain regions). The 6 cortical vessels evaluated in Figure 6 feel really disappointing. As longitudinal imaging is supposed to be the salient element of this manuscript (first word appearing in the title), it should be as good and trustworthy as the first part of the paper. Figure 6c. is of major importance, and should be supported by a more extensive vessel analysis, including various brain areas, and validated on several animals to validate the robustness of longitudinal positioning with several instances of the surgical procedure. Figure 6d estimates the reliability of flow measurements on 3 vessels only. Therefore I recommend showing something similar to what is done in Figures 4 and 5: 3 animals, and more extensive quantification in different brain regions.
Reviewer #3 (Public Review):
Summary:
In this manuscript, Wang et al. performed a study looking at vascular changes in response to anesthesia in awake mice using ultrasound localization microscopy (ULM). The authors report a reduction of vascularity and blood flow velocity in the awake state. In addition, they demonstrate the reproducibility of ULM measurements in time.
Strengths:
Demonstration that high-quality, state-of-the-art ULM images can be performed using cranial windows in awake animals.
Demonstration that repeated imaging in time produces comparable images.
Weaknesses:
It is unclear whether multiple animals were used in the statistical analysis.
Generalizations are sometimes drawn from what seems to be the analysis of a single vessel.
The description of the statistical analysis is mostly qualitative.
Some terms used are insufficiently defined.
Additional limitations should be included in the discussion.
Some technical details are lacking.
Without information about whether the results obtained come from multiple animals, it is difficult to conclude that the authors generally achieved their aim. They do achieve it in a single animal.
The results that are shown are interesting and could have an impact on the ULM community and beyond. In particular, the experimental setup they used along with the high reproducibility they report could become very important for the use of ULM in larger animal cohorts.