Author response:
The following is the authors’ response to the original reviews.
Reviewer #1 (Public review):
Comment 1: This manuscript from Clayton and co-authors, entitled ”Mechanism of dimer selectivity and binding cooperativity of BRAF inhibitors”, aims to clarify the molecular mechanism of BRAF dimer selectivity. Indeed, first-generation BRAF inhibitors, targeting monomeric BRAFV600E, are ineffective in treating resistant dimeric BRAF isoforms. Here, the authors employed molecular dynamics simulations to study the conformational dynamics of monomeric and dimeric BRAF, in the presence and absence of inhibitors. Multi-microsecond MD simulations showed an inward shift of the αC helix in the BRAFV600E mutant dimer. This helped in identifying a hydrogen bond between the inhibitors and the BRAF residue Glu501 as critical for dimer compatibility. The stability of the aforementioned interaction seems to be important to distinguish between dimer-selective and equipotent inhibitors.
The study is overall valuable and robust. The authors used the recently developed particle mesh Ewald constant pH molecular dynamics, a state-of-the-art method, to investigate the correct histidine protonation considering the dynamics of the protein. Then, multi-microsecond simulations showed differences in the flexibility of the αC helix and DFG motif. The dimerization restricts the αC position in the inward conformation, in agreement with the result that dimer-compatible inhibitors can stabilize the αC-in state. Noteworthy, the MD simulations were used to study the interactions between the inhibitors and the protein, suggesting a critical role for a hydrogen bond with Glu501. Finally, simulations of a mixed state of BRAF (one protomer bound to the inhibitor and the other apo) indicate that the ability to stabilize the inward αC state of the apo protomer could be at the basis of the positive cooperativity of PHI1.
Response: We thank the reviewer for the positive evaluation of our work.
Comment 2: One potential weakness in the manuscript is the lack of reported uncertainties related to the analyzed quantities. Providing this information would significantly enhance the clarity regarding the reliability of the analyses and the confidence in the claims presented.
Response and revision: We agree with the reviewer that reporting uncertainties will clarify and strengthen our arguments. Following this suggestion, we have added error bars to Figures 3 and 5 representing the standard deviation of the K-E salt bridge probability. This shows that the deviation across replicas of how often the salt bridge is present. Thus, it better supports our claim that this salt bridge is promoted by the presence of PHI1, as the deviation of the salt bridge is minimal for protomers containing PHI1. In addition to these error bars, we have also included a table to the Supplementary Information (Supplementary Table 2) containing the mean and standard deviation of the αC position, K-E distance, and DFG pseudo dihedral for each protomer in our dimer simulations.
Reviewer #2 (Public review):
Comment 1: The authors employ molecular dynamics simulations to understand the selectivity of FDA-approved inhibitors within dimeric and monomeric BRAF species. Through these comprehensive simulations, they shed light on the selectivity of BRAF inhibitors by delineating the main structural changes occurring during dimerization and inhibitor action. Notably, they identify the two pivotal elements in this process: the movement and conformational changes involving the alpha-C helix and the formation of a hydrogen bond involving the Glu-501 residue. These findings find support in the analyses of various structures crystallized from dimers and co-crystallized monomers in the presence of inhibitors. The elucidation of this mechanism holds significant potential for advancing our understanding of kinase signaling and the development of future BRAF inhibitor drugs.
The authors employ a diverse array of computational techniques to characterize the binding sites and interactions between inhibitors and the active site of BRAF in both dimeric and monomeric forms. They combine traditional and advanced molecular dynamics simulation techniques such as CpHMD (all-atom continuous constant pH molecular dynamics) to provide mechanistic explanations. Additionally, the paper introduces methods for identifying and characterizing the formation of the hydrogen bond involving the Glu501 residue without the need for extensive molecular dynamics simulations. This approach facilitates the rapid identification of future BRAF inhibitor candidates.
Response: We thank the reviewer for the positive evaluation of our work.
Comment 2: The use of molecular dynamics yields crucial structural insights and outlines a mechanism to elucidate dimer selectivity and cooperativity in these systems. However, the authors could consider the adoption of free energy methods to estimate the values of hydrogen bond energies and hydrophobic interactions, thereby enhancing the depth of their analysis.
Response: The current free energy methods are capable of giving accurate estimates of the relative binding free energies of similar ligands; however, accurate calculations of the absolute free energies of hydrogen bond and hydrophobic interactions are not feasible yet. Thus, we decided not to pursue the calculations.
Reviewer #1 (Suggestions to author)
Comment 1: The general recommendation is to give more details about the procedure for the analyses performed and, when possible, show the uncertainties relative to the analyzed quantities. This would clearly indicate the reliability of the analyses and the confidence of the claims. Moreover, it is not always clear how the analyses were performed.
Response and revision: As previously mentioned, we have added uncertainties to our bar graphs in Figures 3 and 5 as well as Supplemental Table 2. In regards to the clarity of our analysis, we added more detail on how the probability distributions were created, which we will discuss in our response to Comment 3.
Comment 2: It is not clear why the authors decided to titrate only the histidines without considering the other charged residues. In particular, the authors show in Supplementary Figure 2 a network of which Asp595 (protomer A) is a part and that, given the direct interaction, could affect the protonation state of His477 (protomer B).
Response: The reviewer is correct in that Asp595 directly interacts with His477 on the opposite protomer. This is exactly the reason why we did not consider titrating Asp595 – the interaction with His477 should further stabilize the charged state of Asp595 and downshift its pKa from the solution value of about 3.8. Thus, Asp595 will be charged at physiological pH and does not need to be titrated in the CpHMD simulations.
Comment 3: Regarding the probability density plots (Figures 3 and 5), clarify if you used all the data from all the replicas and all the protomers. If possible, show a comparison between each replica in the Supplementary Figures. A Supplementary Table with the probability values for the measured K-E salt bridge could be helpful since the bar plots are hard to compare. Also in this case please report the uncertainty or a comparison between the replicas.
Response and revision: To clarify how we created the probability density plots, the following line was added to the Methods section:
On page 15, third paragraph: All probability distributions were created by combining the last three µs of each replica for each system, with each distribution consisting of 50 bins. Unless specified, distributions contain quantities from both protomers in dimeric simulations.
As previously mentioned, we have included Supplemental Table 2 which contains the mean and standard deviation of the K-E distance across systems. For comparison between replicas, we found the time series of the K-E distance in the inhibitor-bound monomer and dimer systems in Supplemental Figure 7 to be sufficient.
Comment 4: It would be better to define the claim: ”it is clear that the timescale of the DFG-out to DFG-in transition is longer than our simulation timeframe of a few microseconds” (lines 208-209). To me it is not obvious why this should be ”clear”.
Response and revision: Our original statement was to convey that, as DFG-in is sampled very rarely, our simulations cannot accurately represent DFG transitions. We have revised the manuscript to the following:
On page 6, fourth paragraph: While this does suggest dimerization loosens the DFG motif, our simulations do not appropriately model the DFG-out/-in transition as the DFG-in state is only occasionally sampled.
Comment 5: In the case of the inhibited monomer simulations, the authors state: ”the PHI1Glu501 interaction can become completely disrupted, with the distance moving beyond 6 A to˚ as high as 12 A; correlated with the disruption of the PHI1-Glu501 interaction, the˚ αC position is shifted out to the range of 21 A-24˚ A” (lines 241-244). However, the plot of the PHI1-Glu501˚ interaction time-series (Supplementary Figure 7) shows that just in one replica of one protomer (Protomer A), the interaction is disrupted, and the αC position never exceeds 21 A (time-series˚ reported in Supplementary Figure 6). None of the fluctuations of the αC position appear to be correlated with the disruption of the ligand-Glu501 interaction. The time-series reported in Supplementary Figures 6 and 7 suggest that the two events are uncorrelated. Please explain this aspect or quantify the correlation to support your claim.
Response: We believe the source of this confusion is because we did not include a time series of αC for inhibited monomer simulations–Supplementary Figure 6 mentioned in the comment is of dimeric BRAF. Thus, We have added Supplementary Figure 8, a timeseries plot of the αC position for inhibited monomer and dimer protomers.
Comment 6: Regarding the analyses of the positive cooperativity, the DFG dihedral probability densities for the apo protomer (Figure 5a) are highly overlapping. Thus, it is hard to believe that these small differences support the claim that ”PHI1 binding in one protomer can allosterically shift the DFG motif outward, making it favorable for binding a second inhibitor” (lines 300-302). The authors should show that the differences in the DFG distributions (in particular, apo dimer vs PHI1 mixed) are statistically significant. Only in this case, the data could support the claim that PHI1 bound to one protomer modulates the DFG conformation in the second one. In my opinion, the overlap between the DFG dihedral probability (Figure 5a) is too high to support the claim that PHI1 is able to allosterically modulate this region in the second apo protomer. Please provide an appropriate statistical test that demonstrates that those distributions are significantly different.
Response and revision: We have adjusted this statement based on the new Supplementary Table 2 to read as the following:
On page 9, third paragraph: Although the shift is small (the differences between means is approximately one standard deviation, see Supplementary Table 2), it suggests that PHI1 binding in one protomer can allosterically shift the DFG motif outward, making it favorable for binding a second inhibitor. In contrast, the DFG dihedral of the apo protomer in the LY-bound mixed dimer appears to be slightly smaller than the apo dimer with difference between means of approximately one standard deviation (Supplementary Table 2), which is unfavorable for binding the second inhibitor (orange and grey, Figure 5a right).
Comment 7: Regarding the dimer holo simulations, I agree that in the LY-bound dimer simulations, the hydrogen bond between the ligand and the E501 is weaker, but I do not understand the sentence ”as seen from the local density maximum centered at∼3.4 A” at line 233, since the 2D˚ density plot (Figure 3h) shows that the highest peak is close to 5 A. Also, it would be useful to˚ clarify how these 2D density plots reported in Figure 3 were obtained.
Response and revision: While the highest peak in Figure 3h is close to 5 A, we were more˚ interested in the local peak close to 3.4 A. To avoid confusion we have modified the line to separate˚ both peaks:
On page 7, second paragraph: In the LY-bound dimer simulations, however, the LY–Glu501 h-bond is weaker and less stable than the counterpart of the PHI1-bound dimer, as seen from the local density maximum centered at ∼3.4 and the global maximum near ∼4.5 A (Figure 3g,h).˚
Comment 8: I have a comment on the strategy suggested to empirically classify the inhibitors by comparing the Glu501-Lys483 distance and the αC position in the two protomers of the crystal structures (in the Concluding Discussion section). The authors suggest that differences below 1 A could determine whether the flexibility of these regions is restricted or not (and whether the˚ inhibitor is equipotent or dimer-selective). However, differences below 1 A, in structures where˚ the average resolution is 2.5 A, might be highly unreliable. In fact, as the authors pointed out, LY˚ and Ponatinib would be classified (erroneously) as dimer-selective inhibitors according to these criteria.
Response and revision: We agree that this proposed method could be unreliable; we intend this strategy to be used as a “quick and dirty” method for analyzing future structures in order to assess selectivity for dimeric BRAF. To convey this, we added the following sentence:
On page 12, second paragraph: Given that the resolution of a resolved structure is often ∼23 A, this proposed assessment is not intended to replace more rigorous tests, i.e. utilizing MD˚ simulations.
Comment 9: A suggestion is to include representative snapshots of the MD simulation in the GitHub repository could allow the reader to better appreciate the results described in the present study.
Response and revision: In order to convey the difference between induced effects of PHI1 and LY, we have added a new folder named snapshots to the GitHub repository which contains the snapshots from the simulations of one LY or one PHI1 bound BRAF (visualized in Figure 5c) in the form of PDB files.