Dependence of Nucleosome Mechanical Stability on DNA Mismatches

  1. Department of Physics, Center for Physics in Living Cells University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
  2. Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR 97201
  3. Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201
  4. Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR 97201
  5. Division of Oncological Sciences, Oregon Health and Science University, Portland, OR 97201
  6. Department of Biophysics, Johns Hopkins University, Baltimore, MD, 21218, USA
  7. Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
  8. Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, MD, 21205, USA
  9. Department of Biosciences, Durham University, Durham, DH1 3LE, UK
  10. Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA
  11. Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, MD, 21205, USA
  12. Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
  13. Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
  14. Howard Hughes Medical Institute, Boston, MA 02115, USA

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Wolf-Dietrich Heyer
    University of California, Davis, Davis, United States of America
  • Senior Editor
    Qiang Cui
    Boston University, Boston, United States of America

Reviewer #1 (Public Review):

Summary:

In this manuscript, Ngo et al. report a peculiar effect where a single base mismatch (CC) can enhance the mechanical stability of a nucleosome. In previous studies, the same group used a similar state-of-the-art fluorescence-force assay to study the unwrapping dynamics of 601-DNA from the nucleosome and observed that force-induced unwrapping happens more slowly for DNA that is more bendable because of changes in sequence or chemical modification. This manuscript appears to be a sequel to this line of projects, where the effect of CC is tested. The authors confirmed that CC is the most flexible mismatch using the FRET-based cyclization assay and found that unwrapping becomes slower when CC is introduced at three different positions in the 601 sequence. The CC mismatch only affects the local unwrapping dynamics of the outer turn of nucleosomal DNA.

Strengths:

These results are in good agreement with the previously established correlation between DNA bendability and nucleosome mechanical stability by the same group. This well-executed, technically sound, and well-written experimental study contains novel nucleosome unwrapping data specific to the CC mismatch and 601 sequence, the cyclizability of DNA containing all base pair mismatches, and the unwrapping of 601-DNA from xenophus and yeast histones. Overall, this work will be received with great interest by the biophysics community and is definitely worth attention.

Weaknesses:

The scope and impact of this study are somewhat limited due to the lack of sequence variation. Whether the conclusion from this study can be generalized to other sequences and other bendability-enhancing mismatches needs further investigation.

Major questions:

(1) As pointed out by the authors, the FRET signal is not sensitive to nucleosome position; therefore, the increasing unwrapping force in the presence of CC can be interpreted as the repositioning of the nucleosome upon perturbation. It is then also possible that CC-containing DNA is not positioned exactly the same as normal DNA from the start upon nucleosome assembly, leading to different unwrapping trajectories. What is the experimental evidence that supports identical positioning of the nucleosomes before the first stretch?

(2) The authors chose a constant stretching rate in this study. Can the authors provide a more detailed explanation or rationale for why this rate was chosen? At this rate, the authors found hysteresis, which indicates that stretching is faster than quasi-static. But it must have been slow and weak enough to allow for reversible unwrapping and wrapping of a CC-containing DNA stretch longer than one helical turn. Otherwise, such a strong effect of CC at a single location would not be seen. I am also curious about the biological relevance of the magnitude of the force. Can such force arise during nucleosome assembly in vivo?

(3) In this study, the CC mismatch is the only change made to the 601 sequence. For readers to truly appreciate its unique effect on unwrapping dynamics as a base pair defect, it would be nice to include the baseline effects of other minor changes to the sequence. For example, how robust is the unwrapping force or dynamics against a single-bp change (e.g., AT to GC) at the three chosen positions?

(4) The last section introduces yeast histones. Based on the theme of the paper, I was expecting to see how the effect of CC is or is not preserved with a different histone source. Instead, the experiment only focuses on differences in the unwrapping dynamics. Although the data presented are important, it is not clear how they fit or support the narrative of the paper without the effect of CC.

(5) It is stated that tRNA was excluded in experiments with yeast-expressed nucleosomes. What is the reason for excluding it for yeast nucleosomes? Did the authors rule out the possibility that tRNA causes the measured difference between the two nucleosome types?

Reviewer #2 (Public Review):

Summary:

Mismatches occur as a result of DNA polymerase errors, chemical modification of nucleotides, during homologous recombination between near-identical partners, as well as during gene editing on chromosomal DNA. Under some circumstances, such mismatches may be incorporated into nucleosomes but their impact on nucleosome structure and stability is not known. The authors use the well-defined 601 nucleosome positioning sequence to assemble nucleosomes with histones on perfectly matched dsDNA as well as on ds DNA with defined mismatches at three nucleosomal positions. They use the R18, R39, and R56 positions situated in the middle of the outer turn, at the junction between the outer turn and inner turn, and in the middle of the inner turn, respectively. Most experiments are carried out with CC mismatches and Xenopus histones. Unwrapping of the outer DNA turn is monitored by single-molecule FRET in which the Cy3 donor is incorporated on the 68th nucleotide from the 5'-end of the top strand and the Cy5 acceptor is attached to the 7th nucleotide from the 5' end of the bottom strand. Force is applied to the nucleosomal DNA as FRET is monitored to assess nucleosome unwrapping. The results show that a CC mismatch enhances nucleosome mechanical stability. Interestingly, yeast and Xenopus histones show different behaviors in this assay. The authors use FRET to measure the cyclization of the dsDNA substrates to test the hypothesis that mismatches enhance the flexibility of the 601 dsDNA fragment and find that CC, CA, CT, TT, and AA mismatches decrease looping time, whereas GA, GG, and GT mismatches had little to no effect. These effects correlate with the results from DNA buckling assays reported by Euler's group (NAR 41, 2013) using the same mismatches as an orthogonal way to measure DNA kinking. The authors discuss that substitution rates are higher towards the middle of the nucleosome, suggesting that mismatches/DNA damage at this position are less accessible for repair, consistent with the nucleosome stability results.

Strengths:

The single-molecule data show clear and consistent effects of mismatches on nucleosome stability and DNA persistence length.

Weaknesses:

It is unclear in the looping assay how the cyclization rate relates to the reporting looping time. The biological significance and implications such as the effect on mismatch repair or nucleosome remodelers remain untested. It is unclear whether the mutational pattern reflects the behavior of the different mismatches. Such a correlation could strengthen the argument that the observed effects are relevant for mutagenesis.

Reviewer #3 (Public Review):

Summary:

The mechanical properties of DNA wrapped in nucleosomes affect the stability of nucleosomes and may play a role in the regulation of DNA accessibility in eukaryotes. In this manuscript, Ngo and coworkers study how the stability of a nucleosome is affected by the introduction of a CC mismatched base pair, which has been reported to increase the flexibility of DNA. Previously, the group has used a sophisticated combination of single-molecule FRET and force spectroscopy with an optical trap to show that the more flexible half of a 601 DNA segment provides for more stable wrapping as compared to the other half. Here, it is confirmed with a single-molecule cyclization essay that the introduction of a CC mismatch increases the flexibility of a DNA fragment. Consistent with the previous interpretation, it also increased the unwrapping force for the half of the 601 segment in which the CC mismatch was introduced, as measured with single-molecule FRET and force spectroscopy. Enhanced stability was found up to 56 bp into the nucleosome. The intricate role of mechanical stability of nucleosomes was further investigated by comparing force-induced unwrapping profiles of yeast and Xenopus histones. Intriguingly, asymmetric unwrapping was more pronounced for yeast histones.

Strengths:

(1) High-quality single-molecule data.

(2) Novel mechanism, potentially explaining the increased prominence of mutations near the dyads of nucleosomes.

(3) A clear mechanistic explanation of how mismatches affect nucleosome stability.

Weaknesses:

(1) Disconnect between mismatches in nucleosomes and measurements comparing Xenopus and yeast nucleosome stability.

(2) Convoluted data in cyclization experiments concerning the phasing of mismatches and biotin site.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation