Root-specific secondary metabolism at the single-cell level: a case study of theanine metabolism and regulation in the roots of tea plants (Camellia sinensis)

  1. State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui 230036, China
  2. Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Paula Fernandez
    INTA, Buenos Aires, Argentina
  • Senior Editor
    Jürgen Kleine-Vehn
    University of Freiburg, Freiburg, Germany

Reviewer #1 (Public Review):

Summary:

The study used root tips from semi-hydroponic tea seedlings. The strategy followed sequential steps to draw partial conclusions.

Initially, protoplasts obtained from root tips were processed for scRNA-seq using the 10x Genomics platform. The sequencing data underwent pre-filtering at both the cell and gene levels, leading to 10,435 cells. These cells were then classified into eight clusters using t-SNE algorithms. The present study scrutinised cell typification through protein sequence similarity analysis of homologs of cell type marker genes. The analysis was conducted to ensure accuracy using validated genes from previous scRNA-seq studies and the model plant Arabidopsis thaliana. The cluster cell annotation was confirmed using in situ RT-PCR analyses. This methodology provided a comprehensive insight into the cellular differentiation of the sample under study. The identified clusters, spanning 1 to 8, have been accurately classified as xylem, epidermal, stem cell niche, cortex/endodermal, root cap, cambium, phloem, and pericycle cells.

Then, the authors performed a pseudo-time analysis to validate the cell cluster annotation by examining the differentiation pathways of the root cells. Lastly, they created a differentiation heatmap from the xylem and epidermal cells and identified the biological functions associated with the highly expressed genes.

Upon thoroughly analysing the scRNA-seq data, the researchers delved into the cell heterogeneity of nitrate and ammonium uptake, transport, and nitrogen assimilation into amino acids. The scRNA-seq data was validated by in situ RT-PCR. It allows the localisation of glutamine and alanine biosynthetic enzymes along the cell clusters and confirms that both constituent the primary amino acid metabolism in the root. Such investigation was deemed necessary due to the paramount importance of these processes in theanine biosynthesis since this molecule is synthesised from glutamine and alanine-derived ethylamine.

Afterwards, the authors analysed the cell-specific expression patterns of the theanine biosynthesis genes, combining the same molecular tools. They concluded that theanine biosynthesis is more enriched in cluster 8 "pericycle cells" than glutamine biosynthesis (Lines 271-272). However, the statement made in Line 250 states that the highest expression levels of genes responsible for glutamine biosynthesis were observed in Clusters 1, 3, 4, 6, and 8, leading to an unclear conclusion.

The regulation of theanine biosynthesis by the MYB transcription factor family is well-established. In particular, CsMYB6, a transcription factor expressed specifically in roots, has been found to promote theanine biosynthesis by binding to the promoter of the TSI gene responsible for theanine synthesis. However, their findings indicate that CsMYB6 expression is present in Cluster 3 (SCN), Cluster 6 (cambium cells), and Cluster 1 (xylem cells) but not in Cluster 8 (pericycle cells), which is known for its high expression of CsTSI. Similarly, their scRNA-seq data indicated that CsMYB40 and CsHHO3, which activate and repress CsAlaDC expression, respectively, did not show high expression in Cluster 1 (the cell cluster with high CsAlaDC expression). Based on these findings, the authors hypothesised that transcription factors and target genes are not necessarily always highly expressed in the same cells. Nonetheless, additional evidence is essential to substantiate this presumption.

Lastly, the authors have discovered a novel transcription factor belonging to the Lateral Organ Boundaries Domain (LBD) family known as CsLBD37 that can co-regulate the synthesis of theanine and the development of lateral roots. The authors observed that CsLBD37 is located within the nucleus and can repress the CsAlaDC promoter's activity. To investigate this mechanism further, the authors conducted experiments to determine whether CsLBD37 can inhibit CsAlaDC expression in vivo. They achieved this by creating transiently CsLBD37-silenced or over-expression tea seedlings through antisense oligonucleotide interference and generation of transgenic hairy roots. Based on their findings, the authors hypothesise that CsLBD37 regulates CsAlaDC expression to modulate the synthesis of ethylamine and theanine.

Additionally, the available literature suggests that the transcription factors belonging to the Lateral Organ Boundaries Domain (LBD) family play a crucial role in regulating the development of lateral roots and secondary root growth. Considering this, they confirmed that pericycle cells exhibit a higher expression of CsLBD37. A recent experiment revealed that overexpression of CsLBD37 in transgenic Arabidopsis thaliana plants led to fewer lateral roots than the wild type. From this observation, the researchers concluded that CsLBD37 regulates lateral root development in tea plants. I respectfully submit that the current conclusion may require additional research before it can be considered definitive.

Further efforts should be made to investigate the signalling mechanisms that govern CsLBD37 expression to arrive at a more comprehensive understanding of this process. In the context of Arabidopsis lateral root founder cells, the establishment of asymmetry is regulated by LBD16/ASL18 and other related LBD/ASL proteins, as well as the AUXIN RESPONSE FACTORs (ARF7 and ARF19). This is achieved by activating plant-specific transcriptional regulators such as LBD16/ASL18 (Go et al., 2012, https://doi.org/10.1242/dev.071928). On the other hand, other downstream homologues of LBD genes regulated by cytokinin signalling play a role in secondary root growth (Ye et al., 2021, https://doi.org/10.1016/j.cub.2021.05.036). It is imperative to shed light on the hormonal regulation of CsLBD37 expression in order to gain a comprehensive understanding of its involvement in the morphogenic process.

Strength:

The manuscript showcases significant dedication and hard work, resulting in valuable insights that serve as a fundamental basis for generating knowledge. The authors skillfully integrated various tools available for this type of study and meticulously presented and illustrated every step involved in the survey. The overall quality of the work is exceptional, and it would be a valuable addition to any academic or professional setting.

Weaknesses:

In its current form, the article presents certain weaknesses that need to be addressed to improve its overall quality. Specifically, the authors' conclusions appear to have been drawn in haste without sufficient experimental data and a comprehensive discussion of the entire plant. It is strongly advised that the authors devote additional effort to resolving the abovementioned issues to bolster the article's credibility and dependability. This will ensure that the article is of the highest quality, providing readers with reliable and trustworthy information.

Reviewer #2 (Public Review):

Summary:

In their manuscript, Lin et al. present a comprehensive single-cell analysis of tea plant roots. They measured the transcriptomes of 10,435 cells from tea plant root tips, leading to the identification and annotation of 8 distinct cell clusters using marker genes. Through this dataset, they delved into the cell-type-specific expression profiles of genes crucial for the biosynthesis, transport, and storage of theanine, revealing potential multicellular compartmentalization in theanine biosynthesis pathways. Furthermore, their findings highlight CsLBD37 as a novel transcription factor with dual regulatory roles in both theanine biosynthesis and lateral root development.

Strengths:

This manuscript provides the first single-cell dataset analysis of roots of the tea plants. It also enables detailed analysis of the specific expression patterns of the gene involved in theanine biosynthesis. Some of these gene expression patterns in roots were further validated through in-situ RT-PCR. Additionally, a novel TF gene CsLBD37's role in regulating theanine biosynthesis was identified through their analysis.

Weaknesses:

Several issues need to be addressed:

(1) The annotation of single-cell clusters (1-8) in Figure 2 could benefit from further improvement. Currently, the authors utilize several key genes, such as CsAAP1, CsLHW, CsWAT1, CsIRX9, CsWOX5, CsGL3, and CsSCR, to annotate cell types. However, it is notable that some of these genes are expressed in only a limited number of cells within their respective clusters, such as CsAAP1, CsLHW, CsGL3, CsIRX9, and CsWOX5. It would be advisable to utilize other marker genes expressed in a higher percentage of cells or employ a combination of multiple marker genes for more accurate annotation.

(2) Figure 3 could enhance clarity by displaying the trajectory of cell differentiation atop the UMAP, similar to the examples demonstrated by Monocle 3.

(3) The identification of CsLBD37 primarily relies on bulk RNA-seq data. The manuscript could benefit from elaborating on the role of the single-cell dataset in this context.

(4) The manuscript's conclusions predominantly rely on the expression patterns of key genes. This reliance might stem from the inherent challenges of tea research, which often faces limitations in exploring molecular mechanisms due to the lack of suitable genetic and molecular methods. The authors may consider discussing this point further in the discussion section.

Reviewer #3 (Public Review):

Summary:

Lin et al., performed a scRNA-seq-based study of tea roots, as an example, to elucidate the biosynthesis and regulatory processes for theanine, a root-specific secondary metabolite, and established the first map of tea roots comprised of 8 cell clusters. Their findings contribute to deepening our understanding of the regulation of the synthesis of important flavor substances in tea plant roots. They have presented some innovative ideas.

It is notable that the authors - based on single-cell analysis results - proposed that TFs and target genes are not necessarily always highly expressed in the same cells. Many of the important TFs they previously identified, along with their target genes (CsTSI or CsAlaDC), were not found in the same cell cluster. Therefore, they proposed a model in which the theanine biosynthesis pathway occurs via multicellular compartmentation and does not require high co-expression levels of transcription factors and their target genes within the same cell cluster. Since it is not known whether the theanine content is absolutely high in the cell cluster 1 containing a high CsAlaDC expression level (due to the lack of cell cluster theanine content determination, which may be a current technical challenge), it is difficult to determine whether this non-coexpressing cell cluster 1 is a precise regulatory mechanism for inhibiting theanine content in plants. In fact, there are actually a small number of cells where TFs and CsAlaDC are simultaneously highly expressed, but the quantity is insufficient to form a separate cluster. However, these few cells may be sufficient to meet the current demands for theanine synthesis. This possibility may better align with some previous experiments and validation results in this study. Moreover, I feel that under normal conditions, plants may not mobilize a large number of cells to synthesize a particular substance. Perhaps, cell cluster 1 is actually a type of cell that inhibits the synthesis of theanine, aiming to prevent excessive theanine production? I do not oppose the model proposed by the author, but I feel there is a possibility as I mentioned. If it seems reasonable, the author may consider adding it to an appropriate position in the discussion.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation