Statistics of C. elegans turning behavior reveals optimality under biasing constraints

  1. AMOLF Institute, Amsterdam, The Netherlands
  2. Department of Experimental Zoology, Wageningen University, Wageningen, The Netherlands
  3. Department of Physics and Astronomy, Vrije Universiteit, Amsterdam, The Netherlands
  4. Okinawa Institute of Science and Technology, Onna-son, Okinawa, Japan

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Agnese Seminara
    University of Genoa, Genoa, Italy
  • Senior Editor
    Aleksandra Walczak
    École Normale Supérieure - PSL, Paris, France

Reviewer #1 (Public Review):

This is an interesting and thorough paper describing the modes of locomotion of the nematode C. elegans in the context of random exploration or response to an aversive stimulus. The authors collect extensive statistics on various locomotor states and compare findings to a minimal mathematical model inspired by the data. Their data reveal biases in two modes of turning- gradual and sharp- which define the path structure of the animal moving on an agar plate. The authors also find that animals tend to overcome inherent anatomical/physiological biases to locomotion when escaping aversive stimuli.

Understanding animal navigation is a window for revealing efficient algorithms for exploration of space, and also allows testing of the extent to which we understand how the nervous system produces specific behaviors. This paper adds important analysis towards these goals. I have a couple of comments that may be worth considering:

(1) The authors place a circular barrier of SDS near the edges of their plates and assume that this aversive stimulus is only sensed when the animal is near the barrier. However, it is possible that the SDS diffuses enough into the interior of the plate to affect the navigation statistics. In this case, the data they have accumulated may in fact be some sort of combination of exploratory locomotion and a general background SDS aversive stimulus. Can the authors control for this? Perhaps test the plates at different distances and times for SDS diffusion? Or replace the barrier with a physical one and not a chemical one?

(2) The authors do not look at mutants or perturb the physiology in defined ways relevant to the locomotion being studied to test their model. Specifically, it would be of interest to identify neural circuits that govern some of the parameters in the model. Although the authors bring this up in their Discussion section, it seems appropriate for this paper, as it would considerably bolster the impact of the work.

Reviewer #2 (Public Review):

Summary:

Turning behavior plays a crucial role in animal exploration and escape responses, regardless of the presence or absence of environmental cues. These turns can be broadly categorized into two categories: strong reorientations, characterized by sudden changes in path directionality, and smooth turns, which involve gradual changes in the direction of motion, leading to sinuosity and looping patterns. One of the key model animals to study these behaviors is the nematode Caenorhabditis elegans, in which the role of strong reorientations has been thoroughly studied. Despite their impact on trajectories, smooth turns have received less attention and remain poorly understood. This study addresses this gap in the literature, by studying the interplay between smooth turns and strong reorientations in nematodes moving in a uniform environment, surrounded by an aversive barrier. The authors use this set-up to study both exploration behavior (when the worm is far from the aversive barrier) and avoidance behavior (when the worm senses the aversive barrier). The main claims of the paper are that (1) during exploratory behavior, the parameters governing strong reorientations are optimized to compensate for the effect of smooth turns, increasing exploration efficiency, and (2) during avoidance, strong reorientations are biased towards the side that maximizes escape success. To support these two claims, the paper presents a detailed quantitative characterization of the statistics of smooth turns and strong reorientations. These results offer insights that may interest a diverse audience, including those in movement ecology, animal search behavior, and the study of Caenorhabditis elegans. In our opinion, the experimental work and data analysis are of the highest quality, resulting in a very clean characterization of C. elegans' turning behavior. However, the experimental design and data analyses presented are not fully aligned with some of the central conclusions drawn, and in particular, we believe that further work is needed to fully support the claim that strong reorientations are optimized to increase exploration efficiency.

Strengths:

The authors have addressed important questions in movement ecology through hypothesis-driven experiments. The choice of C. elegans as a model organism to investigate the impact of turning dynamics on escape and exploration is well-justified by its limited repertoire of strong reorientation behaviors and consistent turning bias across strains and individuals. The quality of the experimental data is very high, using state-of-the-art techniques, and a set-up where a robust and reproducible avoidance response can be studied. The data analysis benefits from state-of-the-art techniques and a deep understanding of C. elegans' behavior, resulting in a very clean and very clear set of results. We particularly appreciated the use of a ventral/dorsal reference system (rather than a left/right one), which is more natural and insightful. As a result, the paper presents one of the best characterizations of C. elegans sharp turning behavior published to date. We find that the claim that strong reorientations are chosen in a way that optimizes avoidance behavior is solid and well-supported. The manuscript is well-written and maintains a coherent line of reasoning throughout.

Weaknesses:

Our primary concerns revolve around the significance and rigor of the research on exploratory behavior. First, we believe that the experimental arena was too small for accurately observing the unfolding of exploration. The movement of assayed animals was clearly impaired by boundary effects, which obscured key elements of C. elegans exploratory behavior such as the mean square displacement or large-scale trajectory structures emerging from curvature bias. Second, we think that the proof that strong reorientations are optimized to maximize exploration performance is too indirect: it relies on a particular model with some unrealistic assumptions and lacks a quantification of the gains provided by the optimization to the individuals. We believe that a more thorough and direct analysis would be needed to fully support the claim.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation