Formation of a giant unilocular vacuole via macropinocytosis-like process confers anoikis resistance

  1. Department of Biological Sciences, KAIST Stem Cell Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
  2. Center for Research Equipment, Korea Basic Science Institute, Ochang, Cheongju, Chungbuk 28119, Korea
  3. School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Jiwon Shim
    Hanyang University, Seoul, Korea, the Republic of
  • Senior Editor
    Felix Campelo
    Institute of Photonic Sciences, Barcelona, Spain

Reviewer #1 (Public Review):

Summary:

The authors found that the loss of cell-ECM adhesion leads to the formation of giant monocular vacuoles in mammary epithelial cells. This process takes place in a macropinocytosis-like process and involves PI3 kinase. They further identified dynamin and septin as essential machinery for this process. Interestingly, this process is reversible and appears to protect cells from cell death.

Strengths:

The data are clean and convincing to support the conclusions. The analysis is comprehensive, using multiple approaches such as SIM and TEM. The discussion on lactation is plausible and interesting.

Weaknesses:

As the first paper describing this phenomenon, it is adequate. However, the elucidation of the molecular mechanisms is not as exciting as it does not describe anything new. It is hoped that novel mechanisms will be elucidated in the future. In particular, the molecules involved in the reversing process could be quite interesting. Additionally, the relationship to conventional endocytic compartments, such as early and late endosomes, is not analyzed.

Reviewer #2 (Public Review):

Summary:

The manuscript "Formation of a giant unilocular vacuole via macropinocytosis-like process confers anoikis resistance" describes an interesting observation and provides initial steps towards understanding the underlying molecular mechanism.

The manuscript describes that the majority of non-tumorigenic mammary gland epithelial cells (MCF-10A) in suspension initiate entosis. A smaller fraction of cells form a single giant unilocular vacuole (hereafter referred to as a GUVac). GUVac appeared to be empty and did not contain invading (entotic) cells. The formation of GUVac could be promoted by disrupting actin polymerisation with LatB and CytoD. The formation of GUVacs correlated with resistance to anoikis. GUVac formation was detected in several other epithelial cells from secretory tissues.

The authors then use electron microscopy and super-resolution imaging to describe the biogenesis of GUVac. They find that GUVac formation is initiated by a micropinocytosis-like phenomenon (that is independent of actin polymerisation). This process leads to the formation of large plasma membrane invaginations, that pinch off from the PM to form larger vesicles that fuse with each other into GUVacs.

Inhibition of actin polymerisation in suspended MCF-10a leads to the recruitment of Septin 6 to the PM via its amphipathic helix. Treatment with FCF (a septin polymerisation inhibitor) blocked GUVac biogenesis, as did pharmacological inhibition of dynamin-mediated membrane fission. The fusion of these vesicles in GUVacs required (perhaps not surprisingly) PI3P.

Strengths:

The authors have made an interesting and potentially important observation. They describe the formation of an endo-lysosomal organelle (a giant unilocular vacuole - GUVac) in suspended epithelial cells and correlate the formation of GUVacs with resistance to aniokis.

Weaknesses:

My major concern is the experimental strategy that is used throughout the paper to induce and study the formation GUVac. Almost every experiment is conducted in suspended cells that were treated with actin depolymerising drugs (e.g. LatB) and thus almost all key conclusions are based on the results of these experiments. I only have a few suggestions that would improve these experiments or change their outcome and interpretation.

Yet, I believe it is essential to identify the endogenous pathway leading to the actin depolymerisation that drives the formation of GUVacs in detached epithelial cells (or alternatively to figure out how it is suppressed in most detached cells). A first step in that direction would be to investigate the polymerization status of actin in MCF-10a cells that 'spontaneously' form GUVacs and to test if these cells also become resistant to anoikis.

Also, it would be great (and I believe reasonably easy) to better characterise molecular markers of GUVacs (LAMP's, Rab's, Cathepsins, etc....) to discriminate them from other endosomal organelles

Reviewer #3 (Public Review):

Summary:

Loss of cell attachment to extracellular matrix (ECM) triggers aniokis (a type of programmed cell death), and resistance to aniokis plays a role in cancer development. However, mechanisms underlying anoikis resistance, and the precise role of F-actin, are not fully known.

Here the authors describe the formation of a new organelle, giant unilocular vacuole (GUVac), in cells whose F-actin is disrupted during loss of matrix attachment. GUVac formation (diameter >500 nm) resulted from a previously unrecognised macropinocytosis-like process, characterized by inwardly curved micron-sized plasma membrane invaginations, dependent on F-actin depolymerization, septin recruitment, and PI(3)P. Finally, the authors show GUVac formation after loss of matrix attachment promotes resistance to anoikis.

From these results, the authors conclude that GUVac formation promotes cell survival in environments where F-actin is disrupted and conditions of cell stress.

Strengths:

The manuscript is clear and well-written, figures are all presented at a very high level.

A variety of cutting-edge cell biology techniques (eg time-lapse imaging, EM, super-resolution microscopy) are used to study the role of the cytoskeleton in GUVac formation. It is discovered that: (i) a macropinocytosis-like process dependent on F-actin depolymerisation, SEPT6 recruitment, and PI(3)P contributes to GUVac formation, and (ii) GUVac formation is associated with resistance to cell death.

Weaknesses:

The manuscript is highly reliant on the use of drugs, or combinations of drugs, for long periods of time (6hr, 18hr..). Wherever possible the authors should test conclusions drawn from experiments involving drugs also using other canonical cell biology approaches (eg siRNA, Crispr). Although suggestive as a first approach, it is not reliable to draw conclusions from experiments where only drug combinations are being advanced (eg LatB + FCF).

F-actin is well known to play a wide variety of roles in cell death and other canonical cell death pathways (PMID: 26292640). The authors show using pharmacological inhibition that F-actin is key for GUVac formation. However, especially when testing for physiological relevance, how can these other roles for F-actin be ruled out?

To test the role of septins in GUVac formation only recruitment studies and no direct functional work is performed. A drug forchlofeneuron (FCF) is used, but this is well known to have off-target effects (PMID: 27473917).

Cells that possess GUVac are resistant to aniokis, but how are these cells resistant? This report is focused on mechanisms underlying GUVac formation and does not directly test for mechanisms underlying aniokis resistance.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation