Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.
Read more about eLife’s peer review process.Editors
- Reviewing EditorJ Andrew PruszynskiWestern University, London, Canada
- Senior EditorTamar MakinUniversity of Cambridge, Cambridge, United Kingdom
Reviewer #1 (Public Review):
Summary:
This study explores the neural control of muscle by decomposing the firing activity of constituent motor units from the grid of surface electromyography (EMG) in the Tibialis (TA) Anterior and Vastus Lateralis (VL) during isometric contractions. The study involves extensive samples of motor units across the broadest range of voluntary contraction intensities up to 80% of MVC. The authors examine the rate coding of the population of motor units, which describes the instantaneous firing rate of each motor unit as a function of muscle force. This relationship is characterized by a natural logarithm function that delineates two distinct phases: an initial phase with a steep acceleration in firing rate, particularly pronounced in low-threshold motor units, and a subsequent modest linear increase in firing rate, more significant in high-threshold motor units.
Strengths:
The study makes a significant contribution to the field of neuromuscular physiology by providing a detailed analysis of motor unit behavior during muscle contractions in a few ways.
(1) The significance lies in its comprehensive framework of motor unit activity during isometric contractions in a broad range of intensities, providing insights into the non-linear relationship between the firing rate and the muscle force. The extensive sample of motor units across the pool confirms the observation in animal studies in which the spinal motoneuron exhibits a discharge consisting of distinct phases in response to synaptic currents, under the influence of persistent inward currents. As such, it is now reasonable to state the human motor units across the pool are also under the control of gain modulation via some neuromodulatory effects in addition to synaptic inputs arising from ionotropic effects.
(2) The firing scheme across the entire motoneuron pool revealed in this study reconciles the discrepancy in firing organization under debate; i.e., whether it is 'onion skin' like or not (Heckman and Enoka 2012). The onion skin like model states that the low threshold motor units discharge higher than high threshold motor units and have been held for a long time because the firing behaviors were examined in a partial range of contraction force range due to technical limitations. This reconciliation is crucial because it is fundamental to modelling the organization of motor unit recruitment and rate coding to achieve a desired force generation to advance our understanding of motor control.
(3) The extensive data collection with a novel blind source separation algorithm on the expanded number of channels of surface EMG signal provides a robust dataset that enhances the reliability and validity of findings, setting a new standard for empirical studies in the field.
Collectively, this study fills several knowledge gaps in the field and advances our understanding of the mechanism underlying the isometric force generation.
Weaknesses:
Although the findings and claims based on them are mostly well aligned, some accounts of the methods and claims need to be clarified.
(1) The authors examine the input-output function of a motor unit by constructing models, using force as an input and discharge rate as an output. It sounds circular, or the other way around to use the muscle force as an input variable, because the muscle force is the result of motor unit discharges, not the cause that elicits the discharges. More specifically, as a result of non-linear interactions of synchronous and/or asynchronous discharges of a population of a given motoneuron pool that give rise to transient increase/maintenance in twitch force, the gross muscle force is attained. I acknowledge that it is extremely challenging experimentally to measure synaptic currents impinging upon the spinal motoneurons in human subjects and the author has an assumption that the force could be used as a proxy of synaptic currents. However, it is necessary to explicitly provide the caveats and rationale behind that. Force could be used as the input variable for modelling.
- The authors examine the firing organizations in TA and VL in this study without explicit purposes and rationale for choosing these muscles. The lack of accounts makes it hard for the readers to interpret the data presented, particularly in terms of comparing the results from the different muscles.
(3) In the methods, the author described the manual curation process after applying the blind source separation algorithm. For the readers to understand the whole process of decomposition and to secure rigor and robustness of the analyses, it would be necessary to provide details on what exact curation is performed with what criteria.
(4) In Figure 3, the early recruited units tend to become untraceable in the higher range of contraction. This is more pronounced in the muscle VL. This limitation would ambiguate the whole firing curve along the force axis and therefore limitation and the applicability in the different muscles needs to be discussed.
(5) It is unclear how commonly the notion "the long-held belief that rate coding is similar across motor units from the same pool" is held among the community without a reference. Different firing organizations have been modelled and discussed in the seminal paper by Fuglevand et al. (1993), and as far as I understand, the debate has not converged to a specific consensus. As such, any reference would be required to support the claim the notion is widely recognized.
(6) The authors claim that the firing behavior as a function of force is well characterized by a natural logarithmic function, which consists of initial steep acceleration followed by a modest increase in firing rate. Arguably the gain modulation in firing rate could be attributed to a neuromodulatory effect on the spinal motoneuron, which has been suggested by a number of animal studies. However, the complexity of the interactions between ionotropic and neuromodulatory inputs to motoneurons may require further elucidation to fully understand the mechanisms of neural control; it is possible to consider the differential acceleration among different threshold motor units as a differential combinatory effect of ionotropic and neuromodulatory inputs, but it is not trivially determined how differentially or systematically the inputs are organized. Likewise, the authors make an account for the difference in firing rate between TA and VL in terms of different amounts or balances of excitatory and inhibitory inputs to the motoneuron pool, but again this could be explained by other factors, such as a different extent of neuromodulatory effects. To determine the complexity of the interactions, further studies will be warranted.
(7) It is unclear with the account " ... the bandwidth of muscle force is < 10Hz during isometric contraction" in the manuscript alone, and therefore, it is difficult to understand the following claim. It appears very interesting and crucial for motor unit discharge and force generation and maintenance because it would pose a question of why the discharge rate of most motor units is higher than 10Hz, despite the bandwidth being so limited, but needs to be elaborated.
(References)
Heckman, C. J. & Enoka, R. M. Motor unit. Comprehensive Physiology 2, 2629-2682 (2012).
Fuglevand, A. J., Winter, D. A. & Patla, A. E. Models of recruitment and rate coding organization in motor-unit pools. J Neurophysiol 70, 2470-2488 (1993).
Reviewer #2 (Public Review):
Summary:
The motivation for this study is to provide a comprehensive assessment of motor unit firing rate responses of entire pools during isometric contractions. The authors have used new quantitative methods to extract more unique motor units across contractions than prior studies. This was achieved by recording muscle fibre action potentials from four high-density surface electromyogram (HDsEMG) arrays (Caillet et al., 2023), quantifying residual EMG comparing the recorded and data-based simulation (Figure 1A-B), and developing a metric to compare the spatial identification for each motor unit (Figure 1D-E). From identified motor units, the authors have provided a detailed characterization of recruitment and firing rate responses during slow voluntary isometric contractions in the vastus lateralis and tibialis anterior muscles up to 80% of maximum intensity. In the lower limb, it is interesting how lower threshold motor units have firing rate responses that saturate, whereas higher threshold units that presumably produce higher muscle contractile forces continue to increase their firing rate. In many ways, these results agree with the rate coding of motor units in the extensor digitorum communis muscle (Monster and Chan, 1977). The paper is detailed, and the analyses are well explained. However, there are several points that I think should be addressed to strengthen the paper.
General comments:
(1) The authors claim they have measured the complete rate coding profiles of motor units in the vastus lateralis and tibialis anterior muscles. However, this study quantified rate coding during slow and prolonged voluntary isometric contractions whereas the function of rate coding during movements (Grimby and Hannerz, 1977) or more complex isometric contractions (Cutsem and Duchateau, 2005; Marshall et al., 2022) remains unexplored. For example, supraspinal inputs may not scale the same way across low and higher threshold motor units, or between muscles (Devanne et al., 1997), making the response of firing rates to increasing isometric contraction force less clear. Conceptually, the authors focus on the literature on intrinsic motoneurone properties, but in vivo, other possibilities are that descending supraspinal drive, spinal network dynamics, and afferent inputs have different effects across motor unit sizes, muscles, and types of contractions. Also, the influence from local muscles that act as synergists (e.g., vastii muscles for the vastus lateralis, and peroneal muscles that evert the foot for the tibialis anterior) or antagonists (coactivation during higher contraction intensities would stiffen the joint) may provide differential forms of proprioceptive feedback across motor pools.
(2) The evidence that the entire motor unit pool was recorded per muscle is not clear. There appears to be substantial residual EMG (Figure 1B), signal cancellation of smaller motor units (lines 172-176), some participants had fewer than 20 identified motor units, and contractions never went above 80% of MVC. Also, to my understanding, there remains no gold-standard in awake humans to estimate the total motor unit number in order to determine if the entire pool was decomposed. Furthermore, using four HDsEMG arrays also raises questions about how some channels were placed over non-target muscles, and if motor units were decomposed from surrounding synergists.
(3) The authors claim (Abstract L51; Discussion L376) that a commonly held view in the field is that rate coding is similar across motor units from the same pool. Perhaps this is in reference to some studies that have carefully assessed lower threshold motor units during lower force ramp contractions (e.g., Fuglevand et al., 2015; Revill and Fuglevand, 2017). However, a more complete integration of the literature exploring motor unit firing rate responses during rapid isometric contractions, comparing different muscles and contraction intensities would be helpful. From Figure 3, the range of rate coding in the tibialis anterior (~7-40 Hz) is greater than the vastus lateralis (~5-22 Hz) muscle across contraction levels. In agreement with other studies, the range of rate coding within some muscles is different than others (Kirk et al., 2021) and during maximal intensity (Bellemare et al., 1983) or rapid contractions (Desmedt and Godaux, 1978). Likewise, within a motor pool, there is a diversity of firing rate responses across motor units of different sizes as a function of isometric force (Monster and Chan, 1977; Desmedt and Godaux, 1977; Kukula and Clamann, 1981; Del Vecchio et al., 2019; Marshall et al., 2022). A strength of this paper is how firing rate responses are quantified across a wide range of motor unit recruitment thresholds and between two muscles. I suggest improving clarity for the general reader, especially in the motivation for testing two lower limb muscles, and elaborating on some of the functional implications.
Reviewer #3 (Public Review):
Summary:
This is an interesting manuscript that uses state-of-the-art experimental and simulation approaches to quantify motor unit discharge patterns in the human TA and VL. The non-linear profiles of motor unit discharge were calculated and found to have an initial acceleration phase followed by an attenuation phase. Lower threshold motor units had a larger gain of the initial acceleration whereas the higher threshold motor unit had a higher gain in the attenuation phase. These data represent a technical feat and are important for understanding how humans generate and control voluntary force.
Strengths:
The authors used rigorous, state-of-the-art analyses to decompose and validate their motor unit data during a wide range of voluntary efforts.
The analyses are clearly presented, applied, and visualized.
The supplemental data provides important transparency.
Weaknesses:
The number of participants and muscles tested are quite small - particularly given the constraints on yield. It is unclear if this will translate to other motor pools. The justification for TA and VL should be provided.
While an impressive effort was made to identify and track motor units across a range of contractions, it appears that a substantial portion of muscle force was not identified. Though high-intensity contractions are challenging to decompose - the authors are commended for their technical ability to record population motor unit discharge times with recruitment thresholds up to 75% of a participant's maximal voluntary contractions. However previous groups have seen substantial recruitment of motor units above 80% and even 90% maximum activation in the soleus. Given the innervation ratios of higher threshold motor units, if recruitment continued to 100%, the top quartile would likely represent a substantial portion of the traditional fast-fatigable motor units. It would be highly interesting to understand the recruitment and rate coding of the highest threshold motor units, at a minimum I would suggest using terms other than "entire range" or "full spectrum of recruitment thresholds"
The quantification of hysteresis using torque appears to make self-evident the observation that lower threshold motor units demonstrate less hysteresis with respect to torque. If there is motor unit discharge there will be force. I believe this limitation goes beyond the floor effects discussed in the manuscript. Traditionally, individuals have used the discharge of a lower threshold unit as the measure on which to apply hysteresis analyses to infer ion channel function in human spinal motoneurons.
The main findings are not entirely novel. See Monster and Chan 1977 and Kanosue et al 1979.