The Rhizobial effector NopT targets Nod factor receptors to regulate symbiosis in Lotus japonicus

  1. National Key Lab of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
  2. State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
  3. Divisions of Plant Science and Technology and Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, USA

Peer review process

Revised: This Reviewed Preprint has been revised by the authors in response to the previous round of peer review; the eLife assessment and the public reviews have been updated where necessary by the editors and peer reviewers.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Rebecca Bart
    The Donald Danforth Plant Science Center, St Louis, United States of America
  • Senior Editor
    Jürgen Kleine-Vehn
    University of Freiburg, Freiburg, Germany

Reviewer #1 (Public review):

Bacterial effectors that interfere with the inner molecular workings of eukaryotic host cells are of great biological significance across disciplines. On the one hand they help us to understand the molecular strategies that bacteria use to manipulate host cells. On the other hand they can be used as research tools to reveal molecular details of the intricate workings of the host machinery that is relevant for the interaction/defence/symbiosis with bacteria. The authors investigate the function and biological impact of a rhizobial effector that interacts with and modifies, and curiously is modified by, legume receptors essential for symbiosis. The molecular analysis revealed a bacterial effector that cleaves a plant symbiosis signaling receptor to inhibit signaling and the host counterplay by phosphorylation via a receptor kinase. These findings have potential implications beyond bacterial interactions with plants.

Bao and colleagues investigated how rhizobial effector proteins can regulate the legume root nodule symbiosis. A rhizobial effector is described to directly modify symbiosis-related signaling proteins, altering the outcome of the symbiosis. Overall, the paper presents findings that will have a wide appeal beyond its primary field.

Out of 15 identified effectors from Sinorhizobium fredii, they focus on the effector NopT, which exhibits proteolytic activity and may therefore cleave specific target proteins of the host plant. They focus on two Nod factor receptors of the legume Lotus japonicus, NFR1 and NFR5, both of which were previously found to be essential for the perception of rhizobial nod factor, and the induction of symbiotic responses such as bacterial infection thread formation in root hairs and root nodule development (Madsen et al., 2003, Nature; Tirichine et al., 2003; Nature). The authors present evidence for an interaction of NopT with NFR1 and NFR5. The paper aims to characterize the biochemical and functional consequences of these interactions and the phenotype that arises when the effector is mutated.

Evidence is presented that in vitro NopT can cleave NFR5 at its juxtamembrane region. NFR5 appears also to be cleaved in vivo. and NFR1 appears to inhibit the proteolytic activity of NopT by phosphorylating NopT. When NFR5 and NFR1 are ectopically over-expressed in leaves of the non-legume Nicotiana benthamiana, they induce cell death (Madsen et al., 2011, Plant Journal). Bao et al., found that this cell death response is inhibited by the coexpression of nopT. Mutation of nopT alters the outcome of rhizobial infection in L. japonicus. These conclusions are well supported by the data.

The authors present evidence supporting the interaction of NopT with NFR1 and NFR5. In particular, there is solid support for cleavage of NFR5 by NopT (Figure 3) and the identification of NopT phosphorylation sites that inhibit its proteolytic activity (Figure 4C). Cleavage of NFR5 upon expression in N. benthamiana (Figure 3A) requires appropriate controls (inactive mutant versions) that have been provided, since Agrobacterium as a closely rhizobia-related bacterium might increase defense related proteolytic activity in the plant host cells.

Key results from N. benthamiana appear consistent with data from recombinant protein expression in bacteria. For the analysis in the host legume L. japonicus transgenic hairy roots were included. To demonstrate that the cleavage of NFR5 occurs during the interaction in plant cells the authors build largely on western blots. Regardless of whether Nicotiana leaf cells or Lotus root cells are used as the test platform, the Western blots indicate that only a small proportion of NFR5 is cleaved when co-expressed with nopT, and most of the NFR5 persists in its full-length form (Figures 3A-D). It is not quite clear how the authors explain the loss of NFR5 function (loss of cell death, impact on symbiosis), as a vast excess of the tested target remains intact. It is also not clear why a large proportion of NFR5 is unaffected by the proteolytic activity of NopT. This is particularly interesting in Nicotiana in the absence of Nod factor that could trigger NFR1 kinase activity.

Comments on latest version:

The presentation of the figures and the language has greatly improved and the specific mistakes pointed out in the last review have been corrected. I especially appreciate the new images used to illustrate the observed mutant phenotypes, which are much clearer and easier to understand. The pictures used to illustrate the mutant phenotypes seem to be of more comparable root regions than before. Overall, the requested changes have been implemented, with some exceptions described below.

• Figure 1: New representative images are shown for BAX1 and CERK1. These pictures are more consistent with the phenotype seen in other treatments, but since the data has not changed, I presume the data from leaf discs (where the leaf discs for these treatments looked very different) previously shown is still included. The criteria for what was considered cell death is in my opinion still not described in the legend. The cell death/total ratio has been added for all leaf discs, as requested.
• Figure 2: the discussion of the figure now emphasizes direct protein interaction. There is still no size marker in 2D or a description of size in the figure legend, making it difficult to compare the result to Figure 3. If I understand the rebuttal comments correctly, there are other bands on the blot, including non-specific bands. This does not negate the need to include the full blot as a supplemental figure to show cleaved NFR5 as well as other bands. I do not see any other clarifications on this subject in the manuscript.
• Figure 5: From the pictures, it is now easier to understand what is meant by "infection foci". Although there is no description in the methods of how these were distinguished from infection threads, I believe the images are clear enough.
• Figure 6: The changes in the discussion are appreciated, but panel E still misrepresents the evidence in the paper, as from the drawing it still seems that the cleaved NFR5 is somehow directly responsible for suppressing infection when this was not shown

Reviewer #2 (Public review):

Summary:

This manuscript presents data demonstrating NopT's interaction with Nod Factor Receptors NFR1 and NFR5 and its impact on cell death inhibition and rhizobial infection. The identification of a truncated NopT variant in certain Sinorhizobium species adds an interesting dimension to the study. These data try to bridge the gaps between classical Nod-factor-dependent nodulation and T3SS NopT effector-dependent nodulation in legume-rhizobium symbiosis. Overall, the research provides interesting insights into the molecular mechanisms underlying symbiotic interactions between rhizobia and legumes.

Strengths:

The manuscript nicely demonstrates NopT's proteolytic cleavage of NFR5, regulated by NFR1 phosphorylation, promoting rhizobial infection in L. japonicus. Intriguingly, authors also identify a truncated NopT variant in certain Sinorhizobium species, maintaining NFR5 cleavage but lacking NFR1 interaction. These findings bridge the T3SS effector with the classical Nod-factor-dependent nodulation pathway, offering novel insights into symbiotic interactions.

Weaknesses:

(1) In the previous study, when transiently expressed NopT alone in Nicotiana tobacco plants, proteolytically active NopT elicited a rapid hypersensitive reaction. However, this phenotype was not observed when expressing the same NopT in Nicotiana benthamiana (Figure 1A). Conversely, cell death and a hypersensitive reaction were observed in Figure S8. This raises questions about the suitability of the exogenous expression system for studying NopT proteolysis specificity.

(2) NFR5 Loss-of-function mutants do not produce nodules in the presence of rhizobia in lotus roots, and overexpression of NFR1 and NFR5 produces spontaneous nodules. In this regard, if the direct proteolysis target of NopT is NFR5, one could expect the NGR234's infection will not be very successful because of the Native NopT's specific proteolysis function of NFR5 and NFR1. Conversely, in Figure 5, authors observed the different results.

(3) In Figure 6E, the model illustrates how NopT digests NFR5 to regulate rhizobia infection. However, it raises the question of whether it is reasonable for NGR234 to produce an effector that restricts its own colonization in host plants.

(4) The failure to generate stable transgenic plants expressing NopT in Lotus japonicus is surprising, considering the manuscript's claim that NopT specifically proteolyzes NFR5, a major player in the response to nodule symbiosis, without being essential for plant development.

Comments on revised version:

This version has effectively addressed most of my concerns. However, one key issue remains unresolved regarding the mechanism of NopT in regulating nodule symbiosis. Specifically, the explanation of how NopT catabolizes NFR5 to regulate symbiosis is still not convincing within the current framework of plant-microbe interaction, where plants are understood to genetically control rhizobial colonization.

While alternative regulatory mechanisms in plant-microbe interactions are plausible, the notion that the NRG234-secreted effector NopT could reduce its own infection by either suppressing plant immunity or degrading the symbiosis receptor remains unsubstantiated. I believe further revisions are needed in the discussion section to more clearly address and clarify these findings and any lingering uncertainties.

Author response:

The following is the authors’ response to the original reviews.

eLife Assessment

This valuable study reveals how a rhizobial effector protein cleaves and inhibits a key plant receptor for symbiosis signaling, while the host plant counters by phosphorylating the effector. The molecular evidence for the protein-protein interaction and modification is solid, though biological evidence directly linking effector cleavage to rhizobial infection is incomplete. With additional functional data, this work could have implications for understanding intricate plant-microbe dynamics during mutualistic interactions.

Thank you for this positive comment. Our data strongly support the view that NFR5 cleavage by NopT impairs Nod factor signaling resulting in reduced rhizobial infection. However, other mechanisms may also have an effect on the symbiosis, as NopT targets other proteins in addition to NFR5. In our revised manuscript version, we discuss the possibility that negative NopT effects on symbiosis could be due to NopT-triggered immune responses. As mentioned in our point-by-point answers to the Reviewers, we included additional data into our manuscript. We would also like to point out that we are generally more cautious in our revised version in order to avoid over-interpreting the data obtained.

Public Reviews:

Reviewer #1 (Public Review):

Bacterial effectors that interfere with the inner molecular workings of eukaryotic host cells are of great biological significance across disciplines. On the one hand they help us to understand the molecular strategies that bacteria use to manipulate host cells. On the other hand they can be used as research tools to reveal molecular details of the intricate workings of the host machinery that is relevant for the interaction/defence/symbiosis with bacteria. The authors investigate the function and biological impact of a rhizobial effector that interacts with and modifies, and curiously is modified by, legume receptors essential for symbiosis. The molecular analysis revealed a bacterial effector that cleaves a plant symbiosis signaling receptor to inhibit signaling and the host counterplay by phosphorylation via a receptor kinase. These findings have potential implications beyond bacterial interactions with plants.

Thank you for highlighting the broad significance of rhizobial effectors in understanding legume-rhizobia interactions. We fully agree with your assessment and have expanded our Discussion (and Abstract) regarding the potential implications of our findings beyond bacterial interactions with plants. We mention the prospect of developing specific kinase-interacting proteases to fine-tune cellular signaling processes in general.

Bao and colleagues investigated how rhizobial effector proteins can regulate the legume root nodule symbiosis. A rhizobial effector is described to directly modify symbiosis-related signaling proteins, altering the outcome of the symbiosis. Overall, the paper presents findings that will have a wide appeal beyond its primary field.

Out of 15 identified effectors from Sinorhizobium fredii, they focus on the effector NopT, which exhibits proteolytic activity and may therefore cleave specific target proteins of the host plant. They focus on two Nod factor receptors of the legume Lotus japonicus, NFR1 and NFR5, both of which were previously found to be essential for the perception of rhizobial nod factor, and the induction of symbiotic responses such as bacterial infection thread formation in root hairs and root nodule development (Madsen et al., 2003, Nature; Tirichine et al., 2003; Nature). The authors present evidence for an interaction of NopT with NFR1 and NFR5. The paper aims to characterize the biochemical and functional consequences of these interactions and the phenotype that arises when the effector is mutated.

Thank you for your positive feedback. We have now emphasized the interdisciplinary significance of our work in the Introduction and Discussion of our revised manuscript. We highlight how the insights gained from our study can contribute to a better understanding of microbial interactions with eukaryotic hosts in general, and hope that our findings could benefit future research in the fields of pathogenesis, immunity, and symbiosis.

We appreciate your detailed summary of our work, which is focused on NopT and its interaction with Nod factor receptors. To ensure that the readers can easily follow the rationale behind our work, we have included a more detailed explanation of how NopT was identified to target Nod factor receptors. In particular, we now better describe the test system (Nicotiana benthamiana cells co-expressing NFR1/NFR5 with a given effector of Sinorhizobium fredii NGR234). In addition, we provide now a more thorough background on the roles of NFR1 and NFR5 in symbiotic signaling and refer to the two Nature papers from 2003 on NFR1 and NFR5 (Madsen et al., 2003; Radutoiu et al., 2003).

Evidence is presented that in vitro NopT can cleave NFR5 at its juxtamembrane region. NFR5 appears also to be cleaved in vivo. and NFR1 appears to inhibit the proteolytic activity of NopT by phosphorylating NopT. When NFR5 and NFR1 are ectopically over-expressed in leaves of the non-legume Nicotiana benthamiana, they induce cell death (Madsen et al., 2011, Plant Journal). Bao et al., found that this cell death response is inhibited by the coexpression of nopT. Mutation of nopT alters the outcome of rhizobial infection in L. japonicus. These conclusions are well supported by the data.

We appreciate your recognition of the robustness of our conclusions. In the context of your comments, we made the following improvements to our manuscript:

We included a more detailed description of the experimental conditions under which the cleavage of NFR5 by NopT was observed in vitro and in vivo. Furthermore, additional experiments were added to strengthen the evidence for NFR5 cleavage by NopT (Fig 3, S3, S6, and S14).

We provided more comprehensive data on the phosphorylation of NopT by NFR1, including phosphorylation assays (Fig. 4) and mass spectrometry results (Fig. S7 and Table S1). These data provide additional information on the mechanism by which NFR1 inhibits the proteolytic activity of NopT.

We expanded the discussion on the cell death response induced by ectopic expression of NFR1 and NFR5 in Nicotiana benthamiana. We also included further details from Madsen et al. (2011) to contextualize our findings within the known literature.

We believe that these additions and clarifications have improved the significance and impact of our study.

The authors present evidence supporting the interaction of NopT with NFR1 and NFR5. In particular, there is solid support for cleavage of NFR5 by NopT (Figure 3) and the identification of NopT phosphorylation sites that inhibit its proteolytic activity (Figure 4C). Cleavage of NFR5 upon expression in N. benthamiana (Figure 3A) requires appropriate controls (inactive mutant versions) that have been provided, since Agrobacterium as a closely rhizobia-related bacterium, might increase defense related proteolytic activity in the plant host cells.

We appreciate your recognition of the importance of appropriate controls in our experimental design. In response to your comments, we revised our manuscript to ensure that the figures and legends provide a clear description of the controls used. We also included a more detailed description of our experimental design at several places. In particular, we have highlighted the use of the protease-dead version of NopT as a control (NopTC93S). Therefore, NFR5-GFP cleavage in N. benthamiana clearly depended on protease activity of NopT and not on Agrobacterium (Fig. 3A). In the revised text, we are now more cautious in our wording and don’t conclude at this stage that NopT proteolyzes NFR5. However, our subsequent experiments, including in vitro experiments, clearly show that NopT is able to proteolyze NFR5.

We are convinced that these changes have improved the quality of our work.

Key results from N. benthamiana appear consistent with data from recombinant protein expression in bacteria. For the analysis in the host legume L. japonicus transgenic hairy roots were included. To demonstrate that the cleavage of NFR5 occurs during the interaction in plant cells the authors build largely on western blots. Regardless of whether Nicotiana leaf cells or Lotus root cells are used as the test platform, the Western blots indicate that only a small proportion of NFR5 is cleaved when co-expressed with nopT, and most of the NFR5 persists in its full-length form (Figures 3A-D). It is not quite clear how the authors explain the loss of NFR5 function (loss of cell death, impact on symbiosis), as a vast excess of the tested target remains intact. It is also not clear why a large proportion of NFR5 is unaffected by the proteolytic activity of NopT. This is particularly interesting in Nicotiana in the absence of Nod factor that could trigger NFR1 kinase activity.

Thank you for your comments regarding the cleavage of NFR5 by NopT and its functional implications. We acknowledge that our immunoblots indicate only a relatively small proportion of the NFR5 cleavage product. Possible explanations could be as follows:

(1) The presence of full-length NFR5 does not preclude a significant impact of NopT on function of NFR5, as NopT is able to bind to NFR5. In other words, the NopT-NFR5 and NopT-NFR1 interactions at the plasmamembrane might influence the function of the NFR1/NFR5 receptor without proteolytic cleavage of NFR5. In fact, protease-dead NopTC93S expressed in NGR234ΔnopT showed certain effects in L. japonicus (less infection foci were formed compared to NGR234ΔnopT Fig. 5E). In this context, it is worth mentioning that the non-acylated NopTC93S (Fig. 1B) and notUSDA257 (Fig. 6B) proteins were unable to suppress NFR1/NFR5-induced cell death in N. benthamina, but this could be explained by the lack of acylation and altered subcellular localization.

(2) The cleaved NFR5 fraction, although small, may be sufficient to disrupt signaling pathways, leading to the observed phenotypic changes (loss of cell death in N. benthamiana; altered infection in L. japonicus).

(3) The used expression systems produce high levels of proteins in the cell. This may not reflect the natural situation in L. japonicus cells.

(4) Cellular conditions could impair cleavage of NFR5 by NopT. Expression of proteins in E. coli may partially result in formation of protein aggregates (inactive NopT; NFR5 resistant to proteolysis).

(5) In N. benthamiana co-expressing NFR1/NFR5, the NFR1 kinase activity is constitutively active (i.e., does not require Nod factors), suggesting an altered protein conformation of the receptor complex, which may influence the proteolytic susceptibility of NFR5.

(6) The proteolytic activity of NopT may be reduced by the interaction of NopT with other proteins such as NFR1, which phosphorylates NopT and inactivates its protease activity.

In our revised manuscript version, we provide now quantitative data for the efficiency of NFR5 cleavage by NopT in different expression systems used (Supplemental Fig. 14). We have also improved our Discussion in this context. Future research will be necessary to better understand loss of NFR5 function by NopT.

It is also difficult to evaluate how the ratios of cleaved and full-length protein change when different versions of NopT are present without a quantification of band strengths normalized to loading controls (Figure 3C, 3D, 3F). The same is true for the blots supporting NFR1 phosphorylation of NopT (Figure 4A).

Thank you for pointing out this. Following your suggestions, we quantified the band intensities for cleaved and full-length NFR5 in our different expression systems (N. benthamiana, L. japonicus and E. coli). The protein bands were normalized to loading controls. The data are shown in the new Supplemental Fig. 14. Similarly, the bands of immunoblots supporting phosphorylation of NopT by NFR1 were quantified. The data on band intensities are shown in Fig. 4B of our revised manuscript. These improvements provide a clearer understanding of how the ratios of cleaved to full-length proteins change in different protein expression systems, and to which extent NopT was phosphorylated by NFR1.

Nodule primordia and infection threads are still formed when L. japonicus plants are inoculated with ∆nopT mutant bacteria, but it is not clear if these primordia are infected or develop into fully functional nodules (Figure 5). A quantification of the ratio of infected and non-infected nodules and primordia would reveal whether NopT is only active at the transition from infection focus to thread or perhaps also later in the bacterial infection process of the developing root nodule.

Thank you for highlighting this aspect of our study. In response to your comment, we have conducted additional inoculation experiments with L. japonicus plants inoculated with NGR234 and NGR234_ΔnopT_ mutant. The new data are shown in Fig 5A, 5E, and 5G. However, we could not find any uninfected nodules (empty) nodules when roots were inoculated with these strains and mention this observation in the Results section of our revised manuscript.

Reviewer #2 (Public Review):

Summary:

This manuscript presents data demonstrating NopT's interaction with Nod Factor Receptors NFR1 and NFR5 and its impact on cell death inhibition and rhizobial infection. The identification of a truncated NopT variant in certain Sinorhizobium species adds an interesting dimension to the study. These data try to bridge the gaps between classical Nod-factor-dependent nodulation and T3SS NopT effector-dependent nodulation in legume-rhizobium symbiosis. Overall, the research provides interesting insights into the molecular mechanisms underlying symbiotic interactions between rhizobia and legumes.

Strengths:

The manuscript nicely demonstrates NopT's proteolytic cleavage of NFR5, regulated by NFR1 phosphorylation, promoting rhizobial infection in L. japonicus. Intriguingly, authors also identify a truncated NopT variant in certain Sinorhizobium species, maintaining NFR5 cleavage but lacking NFR1 interaction. These findings bridge the T3SS effector with the classical Nod-factor-dependent nodulation pathway, offering novel insights into symbiotic interactions.

Weaknesses:

(1) In the previous study, when transiently expressed NopT alone in Nicotiana tobacco plants, proteolytically active NopT elicited a rapid hypersensitive reaction. However, this phenotype was not observed when expressing the same NopT in Nicotiana benthamiana (Figure 1A). Conversely, cell death and a hypersensitive reaction were observed in Figure S8. This raises questions about the suitability of the exogenous expression system for studying NopT proteolysis specificity.

We appreciate your attention to these plant-specific differences. Previous studies showed that NopT expressed in tobacco (N. tabacum) or in specific Arabidopsis ecotypes (with PBS1/RPS5 genes) causes rapid cell death (Dai et al. 2008; Khan et al. 2022). Khan et al. 2022 reported recently that cell death does not occur in N. benthamiana unless the leaves were transformed with PBS1/RPS5 constructs. Our data shown in Fig. S15 confirm these findings. As cell death (effector triggered immunity) is usually associated with induction of plant protease activities, we considered N. tabacum and A. thaliana plants as not suitable for testing NFR5 cleavage by NopT. In fact, no NopT/NFR5 experiments were not performed with these plants in our study. In response to your comment, we now better describe the N. benthamiana expression system and cite the previous articles_._ Furthermore, We have revised the Discussion section to better emphasize effector-induced immunity in non-host plants and the negative effect of rhizobial effectors during symbiosis. Our revisions certainly provide a clearer understanding of the advantages and limitations of the N. benthamiana expression system.

(2) NFR5 Loss-of-function mutants do not produce nodules in the presence of rhizobia in lotus roots, and overexpression of NFR1 and NFR5 produces spontaneous nodules. In this regard, if the direct proteolysis target of NopT is NFR5, one could expect the NGR234's infection will not be very successful because of the Native NopT's specific proteolysis function of NFR5 and NFR1. Conversely, in Figure 5, authors observed the different results.

Thank you for this comment, which points out that we did not address this aspect precisely enough in the original manuscript version. We improved our manuscript and now write that nfr1 and nfr5 mutants do not produce nodules (Madsen et al., 2003; Radutoiu et al., 2003) and that over-expression of either NFR1 or NFR5 can activate NF signaling, resulting in formation of spontaneous nodules in the absence of rhizobia (Ried et al., 2014). In fact, compared to the nopT knockout mutant NGR234_ΔnopT_, wildtype NGR234 (with NopT) is less successful in inducing infection foci in root hairs of L. japonicus (Fig. 5). With respect to formation of nodule primordia, we repeated our inoculation experiments with NGR234_ΔnopT_ and wildtype NGR234 and also included a nopT over-expressing NGR234 strain into the analysis. Our data clearly showed that nodule primordium formation was negatively affected by NopT. The new data are shown in Fig. 5 of our revised version. Our data show that NGR234's infection is not really successful, especially when NopT is over-expressed. This is consistent with our observations that NopT targets Nod factor receptors in L. japonicus and inhibits NF signaling (NIN promoter-GUS experiments). Our findings indicate that NopT is an “Avr effector” for L. japonicus. However, in other host plants of NGR234, NopT possesses a symbiosis-promoting role (Dai et al. 2008; Kambara et al. 2009). Such differences could be explained by different NopT targets in different plants (in addition to Nod factor receptors), which may influence the outcome of the infection process. Indeed, our work shows hat NopT can interact with various kinase-dead LysM domain receptors, suggesting a role of NopT in suppression or activation of plant immunity responses depending on the host plant. We discuss such alternative mechanisms in our revised manuscript version and emphasize the need for further investigation to elucidate the precise mechanisms underlying the observed infection phenotype and the role of NopT in modulating symbiotic signaling pathways. In this context, we would also like to mention the two new figures of our manuscript which are showing (i) the efficiency of NFR5 cleavage by NopT in different expression systems, (ii) the interaction between NopTC93S and His-SUMO-NFR5JM-GFP, and (iii) cleavage of His-SUMO-NFPJM-GFP by NopT (Supplementary Figs. S8 and S9).

(3) In Figure 6E, the model illustrates how NopT digests NFR5 to regulate rhizobia infection. However, it raises the question of whether it is reasonable for NGR234 to produce an effector that restricts its own colonization in host plants.

Thank you for mentioning this point. We are aware of the possible paradox that the broad-host-range strain NGR234 produces an effector that appears to restrict its infection of host plants. As mentioned in our answer to the previous comment, NopT could have additional functions beyond the regulation of Nod factor signaling. In our revised manuscript version, we have modified our text as follows:

(1) We mention the potential evolutionary aspects of NopT-mediated regulation of rhizobial infection and discuss the possibility that interactions between NopT and Nod factor receptors may have evolved to fine-tune Nod factor signaling to avoid rhizobial hyperinfection in certain host legumes.

(2) We also emphasize that the presence of NopT may confer selective advantages in other host plants than L. japonicus due to interactions with proteins related to plant immunity. Like other effectors, NopT could suppress activation of immune responses (suppression of PTI) or cause effector-triggered immunity (ETI) responses, thereby modulating rhizobial infection and nodule formation. Interactions between NopT and proteins related to the plant immune system may represent an important evolutionary driving force for host-specific nodulation and explain why the presence of NopT in NGR234 has a negative effect on symbiosis with L. japonicus but a positive one with other legumes.

(4) The failure to generate stable transgenic plants expressing NopT in Lotus japonicus is surprising, considering the manuscript's claim that NopT specifically proteolyzes NFR5, a major player in the response to nodule symbiosis, without being essential for plant development.

We also thank for this comment. We have revised the Discussion section of our manuscript and discuss now our failure to generate stable transgenic L. japonicus plants expressing NopT. We observed that the protease activity of NopT in aerial parts of L. japonicus had a negative effect on plant development, whereas NopT expression in hairy roots was possible. Such differences may be explained by different NopT substrates in roots and aerial parts of the plant. In this context, we also discuss our finding that NopT not only cleaves NFR5 but is also able to proteolyze other proteins of L. japonicus such as LjLYS11, suggesting that NopT not only suppresses Nod factor signaling, but may also interfere with signal transduction pathways related to plant immunity. We speculate that, depending on the host legume species, NopT could suppress PTI or induce ETI, thereby modulating rhizobial infection and nodule formation.

Recommendations for the authors:

Reviewer #1 (Recommendations For The Authors):

Overall the text and figure legends must be double-checked for correctness of scientific statements. The few listed here are just examples. There are more that are potentially damaging the perception by the readers and thus the value of the manuscript.

The nopT mutant leads to more infections. In line 358 the statement: "...and the proteolysis of NFR5 are important for rhizobial infection", is wrong, as the infection works even better without it. It is, according to my interpretation of the results, important for the regulation of infection. Sounds a small difference, but it completely changes the meaning.

We appreciate your thorough review and have taken the opportunity to correct this error. Following your suggestions, we carefully rephrased the whole text and figure legends to ensure that the scientific statements accurately reflect the findings of our study. We are convinced that these changed have increased the value of this study.

In line 905 the authors state that NopTC indicates the truncated version of NopT after autocleavage by releasing about 50 a.a. at its N-terminus.

They do not analyse this cleavage product to support this claim. So better rephrase.

According to Dai et al. (2008), NopT expressed in E. coli is autocleaved. The N-terminal sequence GCCA obtained by Edman sequencing suggests that NopT was cleaved between M49 and G50. We improved our manuscript and now write:

(1) “A previous study has shown that NopT is autocleaved at its N-terminus to form a processed protein that lacks the first 49 amino acid residues (Dai et al., 2008)”

(2) “However, NopTΔN50, which is similar to autocleaved NopT, retained the ability to interact with NFR5 but not with NFR1 (Fig. S2D).”.

In line 967: "Both NopT and NopTC after autocleavage exert proteolytic activities" This is confusing as it was suggested earlier that NopTc is a product of the autocleavage. There is no indication of another round of NopTc autocleavage or did I miss something?

Thank you for bringing this inaccuracy to our attention. There is no second round of NopT autocleavage. We have corrected the text and write: “NopT and notC (autocleaved NopT) proteolytically cleave NFR5 at the juxtamembrane domain to release the intracellular domain of NFR5”

Given the amount of work that went into the research, the presentation of the figures should be considerably improved. For example, in Figure 3F the mutant is not correctly annotated. In figure 5 the term infection foci and IT occur but it is not explained in the legend what these are, where they can be seen in the figure and how the researchers discriminated between the two events.

In general, the labeling of the figure panels should be improved to facilitate the understanding. For example, in Figure 3 the panels switch between different host plant systems. The plant could be clarified for each panel to aid the reader. The asterisks are not in line with the signal that is supposed to be marked. And so on. I strongly advise to improve the figures.

Thank you for your valuable suggestions. We acknowledge the importance of clear and informative figure presentation to enhance the understanding of our research findings. In response to your comments, we made a comprehensive revision of the figures to address the mentioned issues:

(1) We corrected annotations of the mutant in Figure 3F to accurately represent the experimental conditions.

(2) We revised the legend of Figure 5 and provide clear explanations of the terms "infection foci" and "IT" (infection threads) in the Methods section.

(3) We improved the labeling of figure panels and improved the writing of the figure legend specifying the protein expression system (N. benthamiana, L. japonicus and E. coli, respectively). . We ensured that the asterisks indicating statistically significant results are properly aligned.

Furthermore, we carefully reviewed each figure to enhance clarity and readability, including optimizing font size and line thickness. Captions and annotations were also revised.

Figure 1

• To verify that the lack of observed cell death is not linked to differential expression levels, an expression control Western blot is essential. In the expression control Western blot given in the supplemental materials (Supplemental fig. 1E), NFR5 is not visible in the first lane.

We appreciate your comments on the control immunoblot which were made to verify the presence of NFR1, NFR5 and NopT in N. benthamiana. However, as shown in Supplemental Fig. 1E, the intact NFR5 could not be immuno-detected when co-expressed with NFR1 and NopT. To ensure co-expression of NFR1/NFR5, A. tumefaciens carrying a binary vector with both NFR1 and NFR5 was used. In the revised version, we modified the figure legend accordingly and also included a detailed description of the procedure at lines 165-166

• Labeling of NFR1/LjNFR1 should be kept consistent between the text and the figures. Currently, the text refers to both NFR1 and LjNFR1 and figures are labelled NFR1. The same is true for NFR5.

Thank you for pointing out this inconsistency. We revised our manuscript and use now consistently NFR1 and NFR5 without a prefix to avoid any confusions.

• A clearer description of how cell death was determined would be useful. In the selected pictures in panel D, leaves coexpressing nopT with Bax1 or Cerk1 appear very different from the pictures selected for NopM and AVr3a/R3a.

We agree that a clearer description of our cell death experiments with N. benthamiana was necessary. We have re-worded the figure legend to provide more detailed information on the criteria used for assessing cell death. Additionally, we show now our images at higher resolution.

• In panel D, the "Death/Total" ratio is only shown for leaf discs where nopT was coexpressed with the cell-death triggering proteins. Including the ratio for leaf discs where only the cell-death triggering protein (without nopT ) was expressed would make the figure more clear.

Thank you for this suggestion. To provide a more comprehensive comparison, we included the "Cell death/Total" ratio for all leaf disc images shown in Fig. 1D.

Figure 2:

• A: Split-YFP is not ideal as evidence for colocalization because of the chemical bond formed between the YFP fragments that may lead to artificial trapping/accumulation outside the main expression domains. Overall, the authors should revise if this figure aims to show colocalization or interaction. In the current text, both terms are used, but these are different interpretations.

We appreciate your concern regarding the use of Split-YFP for colocalization analysis. We carefully reviewed the figure and corresponding text to ensure clarity in the interpretation of the results. The primary aim of this figure was to explore protein-protein interactions rather than strict colocalization. Protein-protein interactions have also been validated by other experiments of our work. We have revised the text accordingly and no longer emphasize on “co-localization”.

• Given the focus on proteolytic activity in this paper, all blots need to be clearly labeled with size markers, and it would be good to include a supplemental figure with all other bands produced in the Western blot, regardless of their size. Without this, the results in panel 2D seem inconsistent with results presented in figure 3A, since NFR5 does not appear to be cleaved in the Western blot in 2D, but 3A shows cleavage when the same proteins (with different tags) are coexpressed in the same system.

Thank you for bringing up this point. We ensured that all immunoblots are clearly labeled with size markers in our revised manuscript. We also carefully checked the consistency of the results presented in Figures 2D and Figure 3A and included appropriate clarifications in the revised manuscript. In Figure 2D, we show the bands at around 75 kD (multi-bands would be detected below, including cleaved NFR5 by NopT, but also other non-specific bands).

Figure 3:

• In panel E, NopTC93S cannot cleave His-Sumo-NFR5JM-GFP, but it would be interesting to also show if NopTC93S can bind the NFR5JM fragment. It would also be useful to see this experiment done with the JM of NFP.

Thank you for the suggestion. We agree that investigating the binding of NopTC93S to the NFR5JM fragment provides valuable insights into the interaction between NopT and NFR5. In our revised version, we show in the new Supplemental Fig. S4 that NopT interacts with NFR5JM and cleaves NFPJM. The Results section has been modified accordingly.

• The panels in this figure require better labeling. In many panels, asterisks are misplaced relative to the bands they should highlight, and not all blots have size markers or loading controls.

Thank you for bringing this to our attention. We carefully reviewed the labeling of all panels in Figure 3 to ensure accuracy and clarity. We ensured that asterisks are correctly placed in the figures. We also included size markers and loading controls to improve the quality of the shown immunoblots.

• Since there is no clear evidence in this figure that the smear in the blot in panel C is phosphorylated NopT, it is recommended to provide a less interpretative label on the blot, and explain the label in the text.

We appreciate your suggestion regarding the labeling of the blot in panel C of Fig. 3. We revised the label and provided a less interpretative designation in Fig. 3C. We also rephrased the figure legend and the text in the Results section as recommended.

Figure 4

• In B, a brief introduction in the text to the function of the Zn-phostag would make the figure easier to understand for more readers.

Thank you for the suggestion. We agree and have provided a brief explanation in the Results section: “On such gels, a Zn2+-Phos-tag bound phosphorylated protein migrates slower than its unbound nonphosphorylated form. Furthermore, we have included the reference (Kato & Sakamoto, 2019) into the Methods section.

Figure 5:

• Change "Scar bar" to "Scale bar" in the figure captions

Thank you for spotting that typo. We have corrected it.

• Correct the references to the figures in the text

We carefully reviewed the Figure 5 and made corresponding corrections to improve the quality of our manuscript Please check line 394-451.

• It should be clarified what was quantified as "infection foci" (C, F, G)

We revised the legend of Figure 5 and provide now explanations of the terms "infection foci" and "IT" (infection threads) in the Methods section. Please check line 399-451.

• It is recommended to use pictures that are from the same region of the plant root (the susceptible zone). The pictures in panel A appear to be from different regions, since the density of root hairs is different.

Thank you for bringing this to our attention. We ensured that the images selected for panel A were from the same region of the plant root to guarantee consistency and accuracy of the comparison.

• Panel G should be labeled so it is clearer that nopT is being expressed in L. japonicus transgenic roots.

We have labeled this panel more clearly to help the reader understand that nopT was expressed in transgenic L. japonicus roots.

• Panel F is missing statistical tests for ITs

We apologize and have included the results of our statistical tests for ITs.

Figure 6:

• The model presented in panel E misrepresents the role of NFR5 according to the results in the paper. From the evidence presented, it is not clear if the observed rhizobial infection phenotype is due to reduced abundance of full-length NFR5, or if the cleaved NFR5 fragment is suppressing infection. Additionally, S. fredii should not be drawn so close to the plasma membrane, since the bacteria are located outside the cell wall when the T3SS is active.

We appreciate your comment which helps us to improve the interpretation of our results. We agree that the model should accurately reflect the uncertainties regarding the role of NFR5. We revised the model (positioning of S. fredii etc.) and write in the Discussion:

“NopT impairs the function of the NFR1/NFR5 receptor complex. Cleavage of NFR5 by NopT reduces its protein levels. Possible inhibitory effects of NFR5 cleavage products on NF signaling are unknown but cannot be excluded.”

Reviewer #2 (Recommendations For The Authors):

(1) Some minor weaknesses need addressing: In Figure 5A, the root hair density in the two images appears significantly different. Are these images representative of each treatment?

We appreciate your attention to detail and the importance of ensuring that the images in Figure 5A are representative. We carefully reviewed our image selection process and confirm that the shown images are indeed representative of each treatment group. In our revised version, we show additional images and also improved the text in the figure legend. Furthermore, we performed additional GUS staining tests and the new data are shown in Fig 5A abd 5B.

(2) Additionally, please ensure consistency in the format of genotype names throughout the manuscript. For instance, in Line 897, "Italy" should be used in place of "N. benthamiana."

We thank you for pointing out the format of genotype names and corrected our manuscript as requested.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation