Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.
Read more about eLife’s peer review process.Editors
- Reviewing EditorAnne WestDuke University, Durham, United States of America
- Senior EditorK VijayRaghavanNational Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
Reviewer #1 (Public Review):
Summary:
The authors have previously studied the function of the lysine demethylase Kdm6b as a positive regulator of neurogenesis from subventricular zone neural precursors. Here they knockout Kdm6b in progenitors of the dentate gyrus and show convincingly that deletion causes precocious differentiation of these stem cells. These data are valuable and show that Kdm6b can have very different functions in distinct populations of neuronal progenitors.
Strengths:
Kdm6b has repeatedly been implicated as a positive regulator of differentiation in the cellular transitions where it has been studied before. By contrast, here the authors show convincingly that it is required for maintenance of the stem cell state in the hippocampus, and that Kdm6b deletion is associated with premature stem cell differentiation and a small dentate gyrus in the adult hippocampus. Inducible deletion of Kdm6b in adult hippocampal stem cells confirms the precocious differentiation and loss of this population in the absence of Kdm6b even when induced at this later age.
Weaknesses:
This is a surprising finding in light of many other papers that are well-cited by the authors, including their own studies of SVZ progenitors where Kdm6b promotes neuronal differentiation. However, the weakness of the study is that the authors shed very little light on why the effects of Kdm6b would be so different (in fact, largely opposite) in the two stem cell populations they have studied.
Reviewer #2 (Public Review):
Summary:
Gil & Lim et al. applied mouse genetic models to study the roles of chromatin regulator KDM6B in regulating the development of the hippocampal dentate gyrus (DG), as well as the establishment and maintenance of DG NSCs. KDM6B is expressed in postnatal DGs. Importantly, conditional knockout of Kdm2b in embryonic DG progenitors leads to a significantly smaller DG with loss of DG NSCs. Hippocampal-dependent behaviors are defective in Kdm6b-cKO mice. Deletion of Kdm6b results in precocious neuronal differentiation and loss of the NSC population in both postnatal and adult DGs. Single-cell RNA-seq reveals disrupted stem cell maintenance gene signature in Kdm6b-deleted NSCs. Moreover, CUT&RUN studies showed that Kdm6b deletion increases H3K27me3 levels at a few NSC maintenance genes.
Strengths:
The conclusions of this paper are mostly well supported by data. The discussion is thorough.
Weaknesses:
I concur with the two reviewing editors who noted that the paper lacks insights into how KDM6B regulates the expression of NSC genes in DG precursors. Additionally, the authors did not provide evidence regarding whether the function of KDM6B is enzymatically dependent.
The Kdm6b-cKO brain exhibited apparently smaller DGs, indicating compromised neurogenesis. While the authors observed an increased number of IPCs in the E17.5 DGs (Figure 4B-4C) and an increased number of BrdU+TBR2+PROX1+ cells in the P0.5 DGs (Figure 5B-5C), it is perplexing why this does not lead to an increased number of PROX1+ DG neurons? Further investigation into the cellular mechanisms underlying these events would enhance the understanding of Kdm6b's role in neurogenesis.
Many data were not of sufficient quality and should be improved.
Reviewer #3 (Public Review):
Gil et al provide novel evidence that the chromatin regulator KDM6B is important for establishing and maintaining the neural stem cell (NSC) pool within the dentate gyrus in development and adulthood. They show compelling evidence that loss of KDM6B promotes precocious neuronal differentiation, resulting in a failure to establish and maintain the dentate gyrus NSC pool. The strongest evidence they provide is their immunohistochemistry analysis, in which they observed precocious expression of later differentiation markers from cells marked by BrdU. However, given that KDM6B is ubiquitously expressed, it is difficult to ascertain if their dysregulation is due to a direct loss of KDM6B within NSCs or caused by dysregulation of other glial cells impacted by KDM6B loss through the hGFAP-Cre. Characterization of mature glia would strengthen the work.
They additionally provide evidence of precocious differentiation through scRNA-seq by highlighting key genes that are dysregulated with KDM6B loss. It appears the clustering analysis into cell types was done with WT and KDM6b-depleted cells together. The evidence for precocious differentiation would be greatly strengthened if they instead determined cell-type specific clusters using their WT samples and then observed if fewer cells are characterized as NSCs and more cells align to later developmental stage clusters with KDM6B depletion.
Gil et al propose that KDM6B loss leads to hippocampus-specific impairments in learning and memory. While KDM6B-depleted mice do show a significant decrease in freezing time in contextual fear conditioning, Figure 2 Supplement 1 shows KDM6B-depleted mice are hyperactive compared to WT in the open field test. Thus, the reduction in freezing could be due to hyperactivity. Plotting freezing time in short bins throughout the duration of the test can help clarify this. It would be additionally helpful to plot the training baseline and the test on the same graph and compare their freezing from baseline to clarify if they completely fail to freeze or show a reduction in freezing compared to the wild-type.