Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.
Read more about eLife’s peer review process.Editors
- Reviewing EditorVincent LynchUniversity at Buffalo, State University of New York, Buffalo, United States of America
- Senior EditorYamini DalalNational Cancer Institute, Bethesda, United States of America
Reviewer #1 (Public Review):
Summary:
In this manuscript, BOUTRY et al examined a cnidarian Hydra model system where spontaneous tumors manifest in laboratory settings, and lineages featuring vertically transmitted neoplastic cells (via host budding) have been sustained for over 15 years. They observed that hydras harboring long-term transmissible tumors exhibit an unexpected augmentation in tentacle count. In addition, the presence of extra tentacles, enhancing the host's foraging efficiency, correlated with an elevated budding rate, thereby promoting tumor transmission vertically. This study provided evidence that tumors, akin to parasitic entities, can also exert control over their hosts.
Strengths:
The manuscript is well-written, and the phenotype is intriguing.
Weaknesses:
The quality of this manuscript could be improved if more evidence were to be provided regarding the beneficial versus detrimental effects of the tumors.
Reviewer #2 (Public Review):
Background and Summary:
This study addresses the intriguing question of whether and how tumors can develop in the freshwater polyp hydra and how they influence the fitness of the animals. Hydra is notable for its significant morphogenetic plasticity and nearly unlimited capacity for regeneration. While its growth through asexual reproduction (budding) and the associated processes of pattern formation have been extensively studied at the cellular level, the occurrence of tumors was only recently described in two strains of Hydra oligactis (Domazet-Lošo et al, 2014). In that research, an arrest in the differentiation of female germ cells led to an accumulation of germline cells that failed to develop into eggs. In hydra, fertile egg cells typically incorporate nurse cells, which originate from large interstitial stem cells (ISCs) restricted to the germline, through apoptosis. However, this increase in apoptosis activity is absent in "germline tumors," and germline ISCs instead form slowly growing patches that do not compromise tissue integrity. Despite the upregulation of certain genes associated with mammalian neoplasms (such as tpt1 and p23) in this tissue, determining whether this differentiation arrest and the resulting egg patches truly constitute neoplasms remains a challenge.
The authors have recently published two papers on the ecological and evolutionary aspects of hydra tumor formation (Boutry et al 2022, 2023), which is also the focus of this manuscript. They transplanted tissues derived from animals with germline tumors to wildtype animals and analyzed their growth patterns, specifically the number of tentacles in the host tissue. They observed that such tissues induced the growth of additional tentacles compared to tissues without germline tumors. The authors conclude that this growth pattern (increased number of tentacles) is correlated with "reducing the burden on the host by (over-)compensating for the reproductive costs of tumors" and claim that "transmissible tumors in hydra have evolved strategies to manipulate the phenotype of their host". While it might be stimulating to add a fresh view from other disciplines (here, ecological and evolutionary aspects), the authors completely ignore the current knowledge of the underlying cell biology of the processes they analyze.
Strengths:
The study focuses on intriguing questions. Whether and how tumors can develop in the freshwater polyp hydra, and how they influence the fitness of the animals?
Weaknesses:
Concept of germline tumors.
The conceptual foundation of their experiments on germline tumors was the study of Domazet-Lošo et al (2014) introducing the concept of germline tumors in hydra (see above). While this is an intriguing hypothesis, there has been little advancement in comprehending the molecular mechanisms underlying tumor formation in hydra beyond this initial investigation. Germline tumors in hydra do not fully meet the typical criteria for neoplasms observed in mammalian tissues. More importantly, a similar phenotype was already reported by the work of Paul Brien and described as "crise gametique" (Brien, 1966, Biologie de la reproduction animale - Blastogenèse, Gamétogenèse, Sexualisation, ed. Masson & Cie, Paris). This phenomenon of gametic crisis is unique to Hydra oligactis, a stenotherm, cold-adapted cosmopolitan species. In this species, gametogenesis severely impacts the vitality of the polyps, often leading to complete exhaustion and death (Tardent, 1974). Animals can only be rescued during the initial phase of the cold-induced sexual period (see also the research of Littlefield (1984, 1985, 1986, 1991). The observed arrest in differentiation arrest in germline tumors might represent an epigenetically established consequence of surviving gametogenesis. Regrettably, this important work was not mentioned by the authors or by Domazet-Lošo et al. (2014), highlighting a notable gap in the recognition of basic research in this area that might challenge the hydra tumor hypothesis.
"Super-nummary" tentacles in graft experiments.
The authors describe that after grafting tissue from animals with germline tumors to wild-type animals, the number of tentacles in the host tissue increased when the donor tissue had germline tumors. A maximum effect of four additional tentacles was found with donor strain H. oligactis robusta and three additional tentacles with donor strain H.oligactis St Petersburg. In general, H.oligactis wild-type host strains had fewer tentacles than H.oligactis St Petersburg strains. This is consistent with the results of Domazet-Lošo et al (2014) who showed that the number of tentacles increased in the strains with germline tumors. What conclusions can be drawn from these experiments? The authors might want to conclude that transmissible tumors in Hydra have developed strategies to manipulate the phenotype of their host. But there is no evidence for this, as essential controls are missing. It is known that the size of hydra polyps is proportion-regulated, i.e. the number of tentacles varies with the size and number of (epithelial) cells. Such controls are missing in the experiments. There is also a lack of controls from wild-type animals in gametogenesis: it is very likely that grafts with wild-type animals with egg spots of comparable size as the germline tumors (see above) will result in similar numbers of tentacles in host tissue.