The fascinating role of neuropeptide Bursicon and its receptor in shaping insect seasonal polyphenism

  1. Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193 Beijing, China
  2. Sanya Institute of China Agricultural University, 572025 Sanya City, Hainan Province, China

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    John Ewer
    Universidad de Valparaiso, Valparaiso, Chile
  • Senior Editor
    K VijayRaghavan
    National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India

Joint Public Review:

Summary:

Bursicon is a key hormone regulating cuticle tanning in insects. While the molecular mechanisms of its function are rather well studied--especially in the model insect Drosophila melanogaster, its effects and functions in different tissues are less well understood. Here, the authors show that bursicon and its receptor play a role in regulating aspects of the seasonal polyphenism of Cacopsylla chinensis. They found that low temperature treatment activated the bursicon signaling pathway during the transition from summer form to winter form and affect cuticle pigment and chitin content, and cuticle thickness. In addition, the authors show that miR-6012 targets the bursicon receptor, CcBurs-R, thereby modulating the function of bursicon signaling pathway in the seasonal polyphenism of C. chinensis. This discovery expands our knowledge of the roles of neuropeptide bursicon action in arthropod biology.

However, the study falls short of its claim that it reveals the molecular mechanisms of a seasonal polyphenism. While cuticle tanning is an important part of the pear psyllid polyphenism, it is not the equivalent of it. First, there are other traits that distinguish between the two morphs, such as ovarian diapause (Oldfield, 1970), and the role of bursicon signaling in regulating these aspects of polyphenism were not measured. Thus, the phenotype in pear psyllids, whereby knockdown bursicon reduces cuticle tanning seems to simply demonstrate the phenotypes of Drosophila mutants for bursicon receptor (Loveall and Deitcher, 2010, BMC Dev Biol) in another species (Fig. 2I, 4H). Second, the study fails to address the threshold nature of cuticular tanning in this species, although it is the threshold response (specifically, to temperature and photoperiod) that distinguishes this trait as a part of a polyphenism. Whereas miR-6012 was found to regulate bursicon expression, there no evidence is provided that this microRNA either responds to or initiates a threshold response to temperature. In principle, miR-6012 could regulate bursicon whether or not it is part of a polyphenism. Thus, the impact of this work would be significantly increased if it could distinguish between seasonal changes of the cuticle and a bona fide reflection of polyphenism.

Strengths:

This study convincingly identifies homologs of the genes encoding the bursicon subunits and its receptor, showing an alignment with those of another psyllid as well as more distant species. It also demonstrates that the stage- and tissue-specific levels of bursicon follow the expected patterns, as informed by other insect models, thus validating the identity of these genes in this species. They provide strong evidence that the expression of bursicon and its receptor depend on temperature, thereby showing that this trait is regulated through both parts of the signaling mechanism.

Several parallel measurements of the phenotype were performed to show the effects of this hormone, its receptor, and an upstream regulator (miR-6012), on cuticle deposition and pigmentation (if not polyphenism per se, as claimed). Specifically, chitin staining and TEM of the cuticle qualitatively show difference between controls and knockdowns, and this is supported by some statistical tests of quantitative measurements (although see comments below). Thus, this study provides strong evidence that bursicon and its receptor play an important role in cuticle deposition and pigmentation in this psyllid.

The study identified four miRNAs which might affect bursicon due to sequence motifs. By manipulating levels of synthetic miRNA agonists, the study successfully identified one of them (miR-6012) to cause a cuticle phenotype. Moreover, this miRNA was localized (by FISH) to the cuticle, body-wide. To our knowledge, this is the first demonstrated function for this miRNA, and this study provides a good example of using a gene of known function as an entry point to discovering others influencing a trait. Thus, this finding reveals another level of regulation of cuticle formation in insects.

Weaknesses:

(1) The introduction to this manuscript does not accurately reflect progress in the field of mechanisms underlying polyphenism (e.g., line 60). There are several models for polyphenism that have been used to uncover molecular mechanisms in at least some detail, and this includes seasonal polyphenisms in Hemiptera. Therefore, the justification for this study cannot be predicated on a lack of knowledge, nor is the present study original or unique in this line of research (e.g., as reviewed by Zhang et al. 2019; DOI: 10.1146/annurev-ento-011118-112448). The authors are apparently aware of this, because they even provide other examples (lines 104-108); thus the introduction seems misleading as framed.

(2) The data in Figure 2H show "percent of transition." However, the images in 2I show insects with tanned cuticle (control) vs. those without (knockdown). Yet, based on the description of the Methods provided, there appears to be no distinction between "percent of transition" and "percent with tanning defects". This an important distinction to make if the authors are going to interpret cuticle defects as a defect in the polyphenism. Furthermore, there is no mention of intermediate phenotypes. The data in 2H are binned as either present or absent, and these are the phenotypes shown in 2I. Was the phenotype really an all-or-nothing response? Instead of binning, which masks any quantitative differences in the tanning phenotypes, the authors should objectively quantify the degree of tanning and plot that. This would show if and to what degree intermediate tanning phenotypes occurred, which would test how bursicon affects the threshold response. This comment also applies to the data in Figures 4G and 6G. Since cuticle tanning is present in more insect than just those with seasonal polyphenism, showing how this responds as a threshold is needed to make claims about polyphenism.

(3) This study also does not test the threshold response of cuticle phenotypes to levels of bursicon, its receptor, or miR-6012. Hormone thresholds are the most widespread and, in most systems where polyphenism has been studied, the defining characteristic of a polyphenism (e.g., Nijhout, 2003, Evol Dev). Quantitative (not binned) measurements of a polyphenism marker (e.g., chitin) should be demonstrated to result as a threshold titer (or in the case of the receptor, expression level) to distinguish defects in polyphenism from those of its component trait.

(4) Cuticle issue:
(a) Unlike Fig. 6D and F, Figs. 2D and F do not correspond to each other. Especially the lack and reduction of chitin in ds-a+b! By fluorescence microscopy there is hardly any signal, whereas by TEM there is a decent cuticle. Additionally, the dsGFP control cuticle in 2D is cut obliquely with a thick and a thin chitin layer. This is misleading.
(b) In Figs. 2F and 3F, the endocuticle appears to be missing, a portion of the procuticle that is produced post-molting. As tanning is also occurring post-molting, there seems to be a general problem with cuticle differentiation at this time point. This may be a timing issue. Please clarify.
(c) To provide background information, it would be useful analyze cuticle formation in the summer and winter morphs of controls separately by light and electron microscopy. More baseline data on these two morphs is needed.
(d) For the TEM study, it is not clear whether the same part of the insect's thorax is being sectioned each time, or if that matters. There is not an obvious difference in the number of cuticular layers, but only the relative widths of those layers, so it is difficult to know how comparable those images are. This raises two questions that the authors should clarify. First, is it possible that certain parts of the thoracic cuticle, such as those closer to the intersegmental membrane, are naturally thinner than other parts of the body? Second, is the tanning phenotype based on the thickness or on the number of chitin layers, or both? The data shown later in Figure 4I, J convincingly shows that the biosynthesis pathway for chitin is repressed, but any clarification of what this might mean for deposition of chitin would help to understand the phenotypes reported. Also, more details on how the data in Fig. 2G were collected would be helpful. This also goes for the data in Fig. 4 (bursicon receptor knockdowns).

(5) Tissue issue:
The timed experiments shown in all figures were done in whole animals. However, we know from Drosophila that Bursicon activity is complex in different tissues. There is, thus, the possibility, that the effects detected on different days in whole animals are misleading because different tissues--especially the brain and the epidermis, may respond differentially to the challenge and mask each other's responses. The animal is small, so the extraction from single tissue may be difficult. However, this important issue needs to be addressed.

(6) No specific information is provided regarding the procedure followed for the rescue experiments with burs-α and burs-β (How were they done? Which concentrations were applied? What were the effects?). These important details should appear in the Materials and Methods and the Results sections.

(7) Pigmentation
(a) The protocol used to assess pigmentation needs to be validated. In particular, the following details are needed: Were all pigments extracted? Were pigments modified during extraction? Were the values measured consistent with values obtained, for instance, by light microscopy (which should be done)?
(b) In addition, pigmentation occurs post-molting; thus, the results could reflect indirect actions of bursicon signaling on pigmentation. The levels of expression of downstream pigmentation genes (ebony, lactase, etc) should be measured and compared in molting summer vs. winter morphs.

(8) L236: "while the heterodimer protein of CcBurs α+β could fully rescue the effect of CcBurs-R knockdown on the transition percent (Figure 4G 4H)". This result seems contradictory. If CcBurs-R is the receptor of bursicon, the heterodimer protein of CcBurs α+β should not be able to rescue the effect of CcBurs-R knockdown insects. How can a neuropeptide protein rescue the effect when its receptor is not there! If these results are valid, then the CcBurs-R would not be the (sole) receptor for CcBurs α+β heterodimer. This is a critical issue for this manuscript and needs to be addressed (also in L337 in Discussion).

(9) Fig. 5D needs improvement (the magnification is poor) and further explanation and discussion. mi6012 and CcBurs-R seem to be expressed in complementary tissues--do we see internal tissues also (see problem under point 2)? Again, the magnification is not high enough to understand and appreciate the relationships discussed.

(10) The schematic in Fig. 7 is a useful summary, but there is a part of the logic that is unsupported by the data, specifically in terms of environmental influence on cuticle formation (i.e., plasticity). What is the evidence that lower temperatures influence expression of miR-6012? The study measures its expression over life stages, whether with an agonist or not, over a single temperature. Measuring levels of expression under summer form-inducing temperature is necessary to test the dependence of miR-6012 expression on temperature. Otherwise, this result cannot be interpreted as polyphenism control, but rather the control of a specific trait.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation