The autophagy protein, ATG14 safeguards against unscheduled pyroptosis activation to enable embryo transport during early pregnancy

  1. Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
  2. Department Obstetrics and Gynecology
  3. Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
  4. Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
  5. Department of Medicine and Department of Cell Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
  6. Department of Host Defense, Research Institute for Microbial Diseases (RIMD)
  7. Laboratory of Host Defense, World Premier Institute Immunology Frontier Research Center (WPI-IFReC), Osaka University, Osaka 565-0871, Japan
  8. Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a provisional response from the authors.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Wei Yan
    Washington State University, Pullman, United States of America
  • Senior Editor
    Wei Yan
    Washington State University, Pullman, United States of America

Reviewer #1 (Public Review):

This study by Popli et al. evaluated the function of Atg14, an autophagy protein, in reproductive function using a conditional knockout mouse model. The authors showed that female mice lacking Atg14 were infertile partly due to defective embryo transport function of the oviduct and faulty uterine receptivity and decidualization using PgrCre/+;Atg14f/f mice. The findings from this work are exciting and novel. The authors demonstrated that a loss of Atg14 led to an excessive pyroptosis in the oviductal epithelial cells that compromises cellular integrity and structure, impeding the transport function of the oviduct. In addition, the authors use both genetic and pharmacological approaches to test the hypothesis. Therefore, the findings from this study are high-impact and likely reproducible. However, there are multiple major concerns that need to be addressed to improve the quality of the work.

Reviewer #2 (Public Review):

Summary:

In this manuscript, Popli et al investigated the roles of the autophagy-related gene, Atg14, in the female reproductive tract (FRT) using conditional knockout mouse models. By ablation of Atg14 in both oviduct and uterus with PR-Cre (Atg14 cKO), the authors discovered that such females are completely infertile. They went on to show that Atg14 cKO females have impaired embryo implantation and uterus receptivity due to impaired response to P4 stimulation and stromal decidualization. In addition to the uterus defect, the authors also discovered that early embryos are trapped inside the oviduct and cannot be efficiently transported to the uterus in these females. They went on to show that oviduct epithelium in Atg14 cKO females showed increased pyroptosis, which disrupts oviduct epithelial integrity and leads to obstructive oviduct lumen and impaired embryo transport. Therefore, the authors concluded that autophagy is critical for maintaining the oviduct homeostasis and keeping the inflammation under check to enable proper embryo transport.

Strengths:

This study revealed an important and unexpected role of the autophagy-related gene Atg14 in preventing pyroptosis and maintaining oviduct epithelial integrity, which is poorly studied in the field of reproductive biology. The study is well designed to test the roles of ATG14 in mouse oviduct and uterus. The experimental data in general support the conclusion and the interpretations are mostly accurate. This work should be of interest to reproductive biologists and scientists in the field of autophagy and pyroptosis.

Weaknesses:

Despite the strengths, there are several major weaknesses raising concerns. In addition, the mismatched figure panels, the undefined acronyms, and the poor description/presentation of some of the data significantly hinder the readability of the manuscript.

(1) In the abstract, the authors stated that "autophagy is critical for maintaining the oviduct homeostasis and keeping the inflammation under check to enable embryo transport". This statement is not substantiated. Although Atg14 is an autophagy-related gene and plays a critical role in oviduct homeostasis, the authors did not show a direct link between autophagy and pyroptosis/oviduct integrity. In addition, the authors pointed out in the last paragraph of the introduction that none of the other autophagy-related genes (ATG16L, FIP200, BECN1) exhibited any discernable impact on oviduct function. Therefore, the oviduct defect is caused by Atg14 specifically, not necessarily by autophagy.

(2) In lines 412-414, the authors stated that "Atg14 ablation in the oviduct causes activation of pyroptosis", which is also not supported by the experimental data. The authors did not show that Atg14 is expressed in oviduct cells. PR-Cre is also not specific in oviduct cells. It is possible that Atg14 knockout in other PR-expressing tissues (such as the uterus) indirectly activates pyroptosis in the oviduct. More experiments will be required to support this claim. In line with the no defect when Atg14 is knocked out in oviduct ciliary cells, it will be good to use the secretory cells Cre, such as Pax8-Cre, to demonstrate that Atg14 functions in the secretory cells of the oviduct thus supporting this conclusion.

(3) With FOXJ1-Cre, the authors attempted to specifically knockout Atg14 in ciliary cells, but there are no clear fertility and embryo implantation defects in Foxj1/Atg14 cKO mice. The author should provide the verification data to show that Atg14 had been effectively depleted in ciliary cells if Atg14 is normally expressed.

(4) In lines 307-313, the author tested whether ATG14 is required for the decidualization of HESCs. The author stated that "Control siRNA transfected cells when treated with EPC seemed to change their morphological transformation from fibroblastic to epithelioid (Fig. 2E) and had increased expression of the decidualization markers IGFBP1 and PRL by day three only (Fig. 2F)". First, the labels in Figure 2 are not corresponding to the description in the text. Second, the morphology of the HESCs in control and Atg14 siRNA group showed no obvious difference even at day 3 and day 6. The author should point out the difference in each panel and explain in the text or figure legend.

(5) In lines 332-336, the authors pointed out that the cKO mice oviduct lining shows marked eosinophilic cytoplasmic change, but there's no data to support the claim. In addition, the authors further described that "some of the cells showed degenerative changes with cytoplasmic vacuolization and nuclear pyknosis, loss of nuclear polarity, and loss of distinct cell borders giving an appearance of fusion of cells (Fig. 3D)". First, Figure 3D did not show all these phenotypes and it is likely a mismatch to Figure 3E. Even in Figure 3E, it is not obvious to notice all the phenotypes described here. The figure legend is overly simple, and there's no explanation of the arrowheads in the panel. More data/images are required to support the claim here and provide a clear indication and explanation in the figure legend.

(6) In lines 317-325, it is rather confusing about the description of the portion of embryos from the oviduct and uterus. In addition, the total number of embryos was not provided. I would recommend presenting the numerical data to show the average embryos from the oviduct and uterus instead of using the percentage data in Figures 3A and 5G.

(7) In lines 389-391, authors tested whether Polyphyllin VI treatment led to activated pyroptosis and blocked embryo transport. Although Figures 5F-G showed the expected embryo transport defect, the authors did not show the pyroptosis and oviduct morphology. It will be important to show that the Polyphyllin VI treatment indeed led to oviduct pyroptosis and lumen disruption.

(8) In line 378, it would be better to include a description of pyroptosis and its molecular mechanisms to help readers to better understand your experiments. Alternatively, you can add it in the introduction.

(9) Please make sure to provide definitions for the acronyms such as FRT, HESCs, GSDMD, etc.

(10) It is rather confusing to use oviducal cell plasticity in this manuscript. The work illustrated the oviducal epithelial integrity, not the plasticity.

Reviewer #3 (Public Review):

Summary:

The manuscript by Pooja Popli and co-authors tested the importance of Atg14 in the female reproductive tract by conditionally deleting Atg14 using PrCre and also Foxj1cre. The authors showed that loss of Atg14 leads to infertility due to the retention of embryos within the oviduct. The authors further concluded that the retention of embryos within the oviduct is due to pyroptosis in oviduct cells leading to defective cellular integrity. The manuscript has some interesting findings, however there are also areas that could be improved.

Strengths:

The importance of Atg14 and autophagy in the female reproductive tract is incompletely understood. The manuscript also provides partial evidence about a new mechanism linking Atg14 to pyropotosis.

Weaknesses:

(1) It is not clear why the loss of Atg14 selectively induces Pyroptosis within oviduct cells but not in other cellular compartments. The authors should demonstrate that these events are not happening in uterine cells.

(2) The manuscript never showed any effect on the autophagy upon loss of Atg14. Is there any effect on autophagy upon Atg14 loss? If so does that contribute to the observation?

(3) It is not clear what the authors meant by cellular plasticity and integrity. There is no evidence provided in that aspect that the plasticity of oviduct cells is lost. Similarly, more experimental evidence is necessary for the conclusion about cellular integrity.

(4) The mitochondrial phenotype shown in Figure 3 didn't appear as severe as it is described in the results section. The analyses should be more thorough. They should include multiple frames (in supplemental information) showing mitochondrial morphology in multiple cells. The authors should also test that aspect in uterine cells. The authors should measure Feret's diagram. Difference in membrane potential etc. for a definitive conclusion.

(5) The comment that the loss of Atg14 and pyroptosis leads to the narrowing of the lumen in the oviduct should be experimentally shown.

(6) The manuscript never showed the proper mechanism through which Atg14 loss induces pyroptosis. The authors should link the mechanism.

Author response:

Reviewer #1 (Public Review):

This study by Popli et al. evaluated the function of Atg14, an autophagy protein, in reproductive function using a conditional knockout mouse model. The authors showed that female mice lacking Atg14 were infertile partly due to defective embryo transport function of the oviduct and faulty uterine receptivity and decidualization using PgrCre/+; Atg14f/f mice. The findings from this work are exciting and novel. The authors demonstrated that a loss of Atg14 led to an excessive pyroptosis in the oviductal epithelial cells that compromises cellular integrity and structure, impeding the transport function of the oviduct. In addition, the authors use both genetic and pharmacological approaches to test the hypothesis. Therefore, the findings from this study are high-impact and likely reproducible. However, there are multiple major concerns that need to be addressed to improve the quality of the work.

We thank the reviewer for insightful comments and helpful suggestions. We will address majority of the concerns. Specifically, we will evaluate whether loss of Atg14 leads pyroptosis in other reproductive tract tissue, uterus, and ovary. To determine the ATG14 spatiotemporal expression, we will assess the ATG14 expression in oviducts of WT, and cKO mouse models. Further, to understand the impact of Atg14 loss on different regions of oviduct, we would provide additional images from cKO mice and will quantify FOXJ1 positive cells. To address the concerns on cyclicity and steroid hormone levels, we will measure the E2 or P4 levels and assess E2-target genes in uterus from control and cKO mice. We will also include the ampullary section images from the oviducts of Atg14 cKO and control females.

Reviewer #2 (Public Review):

Summary:

In this manuscript, Popli et al investigated the roles of the autophagy-related gene, Atg14, in the female reproductive tract (FRT) using conditional knockout mouse models. By ablation of Atg14 in both oviduct and uterus with PR-Cre (Atg14 cKO), the authors discovered that such females are completely infertile. They went on to show that Atg14 cKO females have impaired embryo implantation and uterus receptivity due to impaired response to P4 stimulation and stromal decidualization. In addition to the uterus defect, the authors also discovered that early embryos are trapped inside the oviduct and cannot be efficiently transported to the uterus in these females. They went on to show that oviduct epithelium in Atg14 cKO females showed increased pyroptosis, which disrupts oviduct epithelial integrity and leads to obstructive oviduct lumen and impaired embryo transport. Therefore, the authors concluded that autophagy is critical for maintaining the oviduct homeostasis and keeping the inflammation under check to enable proper embryo transport.

Strengths:

This study revealed an important and unexpected role of the autophagy-related gene Atg14 in preventing pyroptosis and maintaining oviduct epithelial integrity, which is poorly studied in the field of reproductive biology. The study is well designed to test the roles ofATG14 in mouse oviduct and uterus. The experimental data in general support the conclusion and the interpretations are mostly accurate. This work should be of interest to reproductive biologists and scientists in the field of autophagy and pyroptosis.

Weaknesses:

Despite the strengths, there are several major weaknesses raising concerns. In addition, the mismatched figure panels, the undefined acronyms, and the poor description/presentation of some of the data significantly hinder the readability of the manuscript.

(1) In the abstract, the authors stated that "autophagy is critical for maintaining the oviduct homeostasis and keeping the inflammation under check to enable embryo transport". This statement is not substantiated. Although Atg14 is an autophagy-related gene and plays a critical role in oviduct homeostasis, the authors did not show a direct link between autophagy and pyroptosis/oviduct integrity. In addition, the authors pointed out in the last paragraph of the introduction that none of the other autophagy-related genes (ATG16L, FIP200, BECN1) exhibited any discernable impact on oviduct function. Therefore, the oviduct defect is caused by Atg14 specifically, not necessarily by autophagy.

We agree with the reviewer on this, we will take a cautious approach and will modify the statements that ATG14 dependent autophagy might be critical for maintaining the oviduct homeostasis and keeping the inflammation under check to enable embryo transport.

(2) In lines 412-414, the authors stated that "Atg14 ablation in the oviduct causes activation of pyroptosis", which is also not supported by the experimental data. The authors did not show that Atg14 is expressed in oviduct cells. PR-Cre is also not specific in oviduct cells. It is possible that Atg14 knockout in other PR-expressing tissues (such as the uterus) indirectly activates pyroptosis in the oviduct. More experiments will be required to support this claim. In line with the no defect when Atg14 has knocked out in oviduct ciliary cells, it will be good to use the secretory cells Cre, such as Pax8-Cre, to demonstrate that Atg14 functions in the secretory cells of the oviduct thus supporting this conclusion.

To address Atg14 action in oviduct, we will perform ATG14 IHC staining in the oviduct and also evaluate the GSDMD expression in uteri and ovary, wherein PR-cre expression is active. Further, we will provide literature-based evidence for PR-cre expression in the oviduct, which is well-established. However, generating a secretory Pax-8 cell cre mice model will require a substantial amount of time and effort and we respectfully argue that this is currently out of the scope of this manuscript.

(3) With FOXJ1-Cre, the authors attempted to specifically knockout Atg14 in ciliary cells, but there are no clear fertility and embryo implantation defects in Foxj1/Atg14 cKO mice. The author should provide the verification data to show that Atg14 had been effectively depleted in ciliary cells if Atg14 is normally expressed.

We will perform expression analysis for ATG14 in Foxj1/Atg14 cKO mice to determine the effective ablation in cilia.

(4) In lines 307-313, the author tested whether ATG14 is required for the decidualization of HESCs. The author stated that "Control siRNA transfected cells when treated with EPC seemed to change their morphological transformation from fibroblastic to epithelioid (Fig. 2E) and had increased expression of the decidualization markers IGFBP1 and PRL by day three only (Fig. 2F)". First, the labels in Figure 2 are not corresponding to the description in the text. Second, the morphology of the HESCs in the control and Atg14 siRNA group showed no obvious difference even at day 3 and day 6. The author should point out the difference in each panel and explain in the text or figure legend.

We will correct the labels and include high-magnification images to explain the morphological differences in HESC cells..

(5) In lines 332-336, the authors pointed out that the cKO mice oviduct lining shows marked eosinophilic cytoplasmic change, but there's no data to support the claim. In addition, the authors further described that "some of the cells showed degenerative changes with cytoplasmic vacuolization and nuclear pyknosis, loss of nuclear polarity, and loss of distinct cell borders giving an appearance of fusion of cells (Fig. 3D)". First, Figure 3D did not show all these phenotypes and it is likely a mismatch to Figure 3E. Even in Figure 3E, it is not obvious to notice all the phenotypes described here. The figure legend is overly simple, and there's no explanation of the arrowheads in the panel. More data/images are required to support the claim here and provide a clear indication and explanation in the figure legend.

Dr. Ramya Masand, Chief Pathologist in our department and a contributing author, critically evaluated the stained sections from Figure 3 and provided the pathological assessment as outlined in lines 332-336. We will consult Dr. Masand and will modify the statements accordingly.

(6) In lines 317-325, it is rather confusing about the description of the portion of embryos from the oviduct and uterus. In addition, the total number of embryos was not provided. I would recommend presenting the numerical data to show the average embryos from the oviduct and uterus instead of using the percentage data in Figures 3A and 5G.

We will calculate the average number of embryos from the oviduct and uterus and provide numerical data.

(7) In lines 389-391, authors tested whether Polyphyllin VI treatment led to activated pyroptosis and blocked embryo transport. Although Figures 5F-G showed the expected embryo transport defect, the authors did not show the pyroptosis and oviduct morphology. It will be important to show that the Polyphyllin VI treatment indeed led to oviduct pyroptosis and lumen disruption.

We will perform the GSDMD staining to determine whether Polyphyllin VI treatment resulted in oviductal pyroptosis activation and lumen disruption.

(8) In line 378, it would be better to include a description of pyroptosis and its molecular mechanisms to help readers better understand your experiments. Alternatively, you can add it in the introduction.

We will include more literature-based discussion on pyroptosis and its mechanism.

(9) Please make sure to provide definitions for the acronyms such as FRT, HESCs, GSDMD, etc.

We will provide definitions for the acronyms such as FRT, HESCs, and GSDMD.

(10) It is rather confusing to use oviducal cell plasticity in this manuscript. The work illustrated the oviducal epithelial integrity, not the plasticity.

We will correct the statement.

A few of the additional comments for authors to consider improving the manuscript are listed below.

(1) Some of the figures are missing scale bars, while others have inconsistent scale bars. It would be better to be consistent.

(2) On a couple of occasions, the DAPI signal cannot be seen, such as in Figure 2B and Figure 3D.

(3) Overall, the figure legends can be improved to provide more detailed information to help the reader to interpret the data.

As suggested, we will include the scale bars with high quality images and will elaborate the figure legends text.

(4) In Figure 2D, the Y-axis showed the stimulated/unstimulated uterine weight ratio, why did the author put "Atg14" at the top of the graph? At the same time, the X-axis title is missing in Figure 2D.

(5) In the left panel of Figure 2G, "ATG14" at the top should be "Atg14" to be consistent.

(6) In line 559, there miss "(A)" in front of Immunofluorescence analysis of GSDMD.

We will make these necessary changes.

Reviewer #3 (Public Review):

Summary:

The manuscript by Pooja Popli and co-authors tested the importance of Atg14 in the female reproductive tract by conditionally deleting Atg14 using Pr Cre and Foxj1cre. The authors showed that loss of Atg14 leads to infertility due to the retention of embryos within the oviduct. The authors further concluded that the retention of embryos within the oviduct is due to pyroptosis in oviduct cells leading to defective cellular integrity. The manuscript has some interesting findings, however there are also areas that could be improved.

Strengths:

The importance of Atg14 and autophagy in the female reproductive tract is incompletely understood. The manuscript also provides spatial evidence about a new mechanism linking Atg14 to pyroptosis.

Weaknesses:

(1) It is not clear why the loss of Atg14 selectively induces Pyroptosis within oviduct cells but not in other cellular compartments. The authors should demonstrate that these events are not happening in uterine cells.

We will carry out GSDMD staining in uterine tissues and discuss the findings.

(2) The manuscript never showed any effect on the autophagy upon loss of Atg14. Is there any effect on autophagy upon Atg14 loss? If so, does that contribute to the observation?

We will assess the expression of autophagy-related markers in response to Atg14 loss and will discuss the findings.

(3) It is not clear what the authors meant by cellular plasticity and integrity. There is no evidence provided in that aspect that the plasticity of oviduct cells is lost. Similarly, more experimental evidence is necessary for the conclusion about cellular integrity.

We agree with reviewer on cellular plasticity aspect, we will remove the plasticity word, instead will mention only integrity.

(4) The mitochondrial phenotype shown in Figure 3 didn't appear as severe as it is described in the results section. The analyses should be more thorough. They should include multiple frames (in supplemental information) showing mitochondrial morphology in multiple cells. The authors should also test that aspect in uterine cells. The authors should measure Feret's diagram. Diff erence in membrane potential etc. for a definitive conclusion.

We will perform additional mitochondrial staining to determine the mitochondrial morphology in both the oviduct and uterus. Based on the results, we would consider measuring the Feret's diameters. However, we respectfully argue that performing complex membrane potential studies will take time and are beyond the scope of current focus.

(5) The comment that the loss of Atg14 and pyroptosis leads to the narrowing of the lumen in the oviduct should be experimentally shown.

As shown in Figure 3E, staining the oviduct epithelia with KRT8 clearly showed a disorganized oviduct with abnormally fused cells leaving no lumen space. We could provide higher magnification images in supplementary figures to highlight this observation.

(6) The manuscript never showed the proper mechanism through which Atg14 loss induces pyroptosis. The authors should link the mechanism.

Autophagy has been shown to inhibit pyroptosis by either inhibiting the cleavage of GSDMD or by suppressing various pyroptosis-related factors, including NFLRs and STING proteins. We found that the loss of Atg14 results in elevated GSDMD levels, a potential mechanism through which Atg14 suppresses pyroptosis in the oviduct. Importantly, Atg14 may regulate GSDMD through several intermediary factors, and resolving this intricate nexus necessitates conducting complex biochemical, cellular, and molecular screenings, which is one of the focus of our future investigations.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation