Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.
Read more about eLife’s peer review process.Editors
- Reviewing EditorIlona Grunwald KadowUniversity of Bonn, Bonn, Germany
- Senior EditorK VijayRaghavanNational Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
Reviewer #1 (Public Review):
This study identifies two behavioral processes that underlie learned pathogen avoidance behavior in C. elegans: exiting and re-entry of pathogenic bacterial lawns. Long-term behavioral tracking indicates that animals increase the prevalence of both behaviors over long-term exposure to the pathogen Pseudomonas aeruginosa. Using an optogenetic silencing screen, the authors identify groups of neurons, whose activity regulates lawn occupancy. Surprisingly, they find that optogenetic inhibition of neurons during only the first two hours of pathogen exposure can establish subsequent long-term changes in pathogen aversion. By leveraging a compressed sensing approach, the authors define a set of neurons involved in either lawn exit or lawn re-entry behavior using a constrained set of transgenic lines that drive Arch-3 expression in overlapping groups of neurons. They then measure the calcium activity of the candidate neurons involved in lawn re-entry in freely moving animals using GCaMP, and observe a reduction in their neural activity after exposure to a pathogen. Optogenetic inhibition of AIY and SIA neurons during acute pathogen exposure in naïve animals delays lawn entry whereas activating these neurons in animals previously exposed to pathogen enhances lawn entry, albeit transiently.
This work is missing several controls that are necessary to substantiate their claims. My most important concern is that the optogenetic screen for neurons that alter pathogenic lawn occupancy does not have an accompanying control on non-pathogenic OP50 bacteria. Hence, it remains unclear whether these neuronal inhibition experiments lead to pathogen-specific or generalized lawn-leaving alterations. For strains that show statistical differences between - and + ATR conditions, the authors should perform follow-up validation experiments on non-pathogenic OP50 lawns to ensure that the observed effect is PA14-specific. Similarly, neuronal inhibition experiments in Figures 5E and H are only performed with naïve animals on PA14 - we need to see the latency to re-entry on OP50 as well, to make general conclusions about these neurons' role in pathogen-specific avoidance.
My second major concern is regarding the calcium imaging experiments of candidate neurons involved in lawn re-entry behavior. Although the data shows that AIY, AVK, and SIA/SIB neurons all show reduced activity following pathogen exposure, the authors do not relate these activity changes to changes in behavior. Given the well-established links between these cells and forward locomotion, it is essential to not only report differences in activity but also in the relationship between this activity and locomotory behavior. If animals are paused outside of the pathogen lawn, these neurons may show low activity simply because the animals are not moving forward. Other forward-modulated neurons may also show this pattern of reduced activity if the animals remain paused. Given that the authors have recorded neural activity before and after contact with pathogenic bacteria in freely moving animals, they should also provide an analysis of the relationship between proximity to the lawn and the activity of these neurons.
This work is missing methodological descriptions that are necessary for the correct interpretation of the results shown here. Figure 2 suggests that the determination of statistical significance across the optogenetic inhibition screen will be found in the Methods, but this information is not to be found there. At various points in the text, authors refer to "exit rate", "rate constant", and "entry rate". These metrics seem derived from an averaged measurement across many individual animals in one lawn evacuation assay plate. However "latency to re-entry" is only defined on a per-animal basis in the lawn re-exposure assay. These differences should be clearly stated in the methods section to avoid confusion and to ensure that statistics are computed correctly.
This work also contains mislabeled graphs and incorrect correspondence with the text, which make it difficult to follow the authors 'claims. The text suggests that Pdop-2::Arch3 and Pmpz-1::Arch3 show increased exit rates, whereas Figure 2 shows that Pflp-4::Arch3 but not Pmpz-1::Arch3 has increased exit rate. The authors should also make a greater effort to correctly and clearly label which type of behavioral experiment is used to generate each figure and describe the differences in experimental design in the main text, figure legends, and methods. Figure 2E depicts trajectories of animals leaving a lawn over a 2.5-minute interval but it is unclear when this time window occurs within the 18-hour lawn leaving assay. Likewise, Figure 2H depicts a 30-minute time window which has an unclear relationship to the overall time course of lawn leaving. This figure legend is also mislabeled as "Infected/Healthy", whereas it should be labeled "-/+ ATR".
This work raises the interesting possibility that different sets of neurons control lawn exit and lawn re-entry behaviors following pathogen exposure. However, the authors never directly test this claim. To rigorously show this, the authors would need to show that lawn-exit-promoting neurons (CEPs, HSNs, RIAs, RIDs, SIAs) are dispensable for lawn re-entry behavior and that lawn re-entry promoting neurons (AVK, SIA, AIY, MI) are dispensable for lawn exit behavior in pathogen-exposed animals. The authors identify AVK neurons as important for modulating lawn re-entry behavior by brief inhibition at the start of pathogen exposure but fail to find that these neurons are required for increased latency to re-entry in naïve animals (Figure 5D). Recent work from Marquina-Solis et al (2024) shows that chronic silencing of these neurons delays pathogen lawn leaving, due to impaired release of flp-1 neuropeptide. Authors may wish to connect their work more closely with the existing literature by investigating the behavioral process by which AVK contributes to lawn evacuation.
If the authors work through these criticisms, this work can become an important contribution to the field of pathogen learning in C. elegans. However, in its current form, this work remains incomplete.
Reviewer #2 (Public Review):
In this manuscript, Hallacy et al. used a compressed sensing-based optogenetic screening method to investigate the crucial neurons that regulate pathogenic avoidance behavior in C. elegans. They further substantiate their findings using complementary optogenetic activation and imaging techniques to confirm the roles of the key neurons identified through extensive screening efforts. Notably, they identified AIY and SIA as pivotal neurons in the dynamic process of pathogenic avoidance. Their significant discovery is the delayed or stalled reentry process, which drives avoidance behavior; to my knowledge, this dynamic has not been previously documented. Additionally, the successful integration of quantitative optogenetic tools and compressed sensing algorithms is noteworthy, demonstrating the potential for obtaining highly quantitative data from the C. elegans nervous system. This approach is quite rare in this field, yet it represents a promising direction for studying this simple nervous system.
However, the paper's main weakness lies in its lack of a detailed mechanism explaining how the delayed reentry process directly influences the actual locomotor output that results in avoidance. The term 'delayed reentry' is used as a dynamic metric for quantifying the screening, yet the causal link between this metric and the mechanistic output remains unclear. Despite this, the study is well-structured, with comprehensive control experiments, and is very well constructed.
Reviewer #3 (Public Review):
Summary:
Using a compressed sensing-based approach applied previously by the author's group, the authors conducted an initial screen for neurons that when optogenetically down-regulated, influenced learned pathogen avoidance consisting of two component behaviors, exit from the bacterial lawn and lawn re-entry. Authors found that 4 classes of neurons AVK, SIA, AIY, and MI were inferred over a wide range of sparsity parameters, thereby indicating the importance of lawn re-entry. They found six classes of neurons required for lawn exit. The authors then went on to further analyze the neurons for the re-entry behavior, and conducted calcium imaging of those neurons in the freely behaving animals. They found that the activities of AIY and SIA neurons decreased after the animals that had been exposed to the pathogenic bacteria tried to re-enter the bacterial lawn. They also found that when those neurons of the animals that had not been exposed to pathogenic bacteria were downregulated by optogenetics, those operated animals increased the latency of the re-entry, which is a similar behavioral modification to that of the animals that had been exposed to the pathogen. Conversely, those neurons of the animals that were exposed to pathogenic bacteria were up-regulated by optogenetics, those animals showed a shortened latency of the re-entry, which is similar to the behavior observed in the animals not exposed to pathogen.
Strengths:
This is overall a very nice piece of work. Most importantly, an initial screening of neurons was conducted by a compressed sensing-based approach previously applied by the same group. It is also worth emphasizing that this compressed analysis is applicable when the behavior of interest involves a small number of neurons, as the authors pointed out in the Introduction Session. Therefore, the readers should keep in mind that the validation and significance of this work heavily depend on the justification of scarcity parameters that the authors chose. Nevertheless, this work is well justified because neurons identified by the initial screening were thoroughly analyzed by various methods including calcium imaging and optogenetic manipulation of neuronal activities and behavioral analyses using an animal-tracking system.
Weaknesses:
My only concern is that the authors should be more careful about describing their "compressed sensing-based approach". Authors often cite their previous Nature Methods paper, but should explain more because this method is critical for this manuscript. Also, this analysis is based on the hypothesis that only a small number of neurons are responsible for a given behavior. Authors should explain more about how to determine scarcity parameters, for example.