Human immunodeficiency virus-1 induces and targets host genomic R-loops for viral genome integration

  1. Center for RNA Research, Institute for Basic Science, Seoul 08826, Republic of Korea
  2. School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
  3. Bioinformatics Institute, Seoul National University, Seoul 08826, Republic of Korea
  4. BK21 FOUR Intelligence Computing, Seoul National University, Seoul 08826, Republic of Korea
  5. Department of Computer Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
  6. SNU Institute for Virus Research, Seoul National University, Seoul 08826, Republic of Korea

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a response from the authors (if available).

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    John Schoggins
    The University of Texas Southwestern Medical Center, Dallas, United States of America
  • Senior Editor
    Detlef Weigel
    Max Planck Institute for Biology Tübingen, Tübingen, Germany

Reviewer #1 (Public Review):

(1) Significance of findings and strength of evidence.

(a) The work presented in this manuscript is intended to support the authors' novel idea that HIV DNA integration strongly favors "triple-stranded" R-loops in DNA formed either during transcription of many, but not all, genes or by strand invasion of silent DNA by transcripts made elsewhere, and that HIV infection promotes R-loop formation mediated by incoming virions in the absence of reverse transcription. The authors were able to demonstrate a reverse transcription-independent increase in R-loop formation early during HIV infection, while also demonstrating increased integration into sequences that contain R-loop structures. Furthermore, this manuscript also identifies that R-loops are present in both transcriptionally active and silent regions of the genome and that HIV integrase interacts with R-loops. Although the work presented supports a correlation between R-loop formation and HIV DNA integration, it does not prove the authors' hypothesis that R-loops are directly targeted for integration. Direct experimentation, such as in vitro integration into defined DNA targets, will be required. Further, the authors provide no explanation as to how current sophisticated structural models of concerted retroviral DNA integration into both strands of double-stranded DNA targets can accommodate triple-stranded structures. Finally, there are serious technical concerns with the interpretation of the integration site analyses.

(2) Public review with guidance for readers around how to interpret the work, highlighting important findings but also mentioning caveats.

(a) Introduction: The authors provide an excellent introduction to R-loops but they base the rationale for this study on mis-citation of earlier studies regarding integration in transcriptionally silent regions of the genome. E "most favored locus" cited in the very old reference 6 comprises only 5 events and has not been reproduced in more recent, much larger datasets. For example, see the study of over 300.000 sites in freshly infected PBMC cited in https://doi.org/10.1371/journal.ppat.1009141, which shows a 15-fold preference for integration in expressed genes and no evidence of clustering of sites (as seen in expressed genes) in non-expressed DNA. Further, as far as I can tell, they present no examples in the Results section of R-loops in non-expressed DNA serving as integration targets.

(b) Figure 1: Demonstrates models for HIV infections in both cell lines and primary human CD4+ T cells. R-loop formation was determined through a method called DRIPc-seq which utilizes an antibody specific for DNA-RNA hybrid structures and sequences these regions of the genome using RNaseH treatment to show that when RNA-DNA hybrids are absent then no R-loops are detected. In these models of in vitro and ex vivo infection, the authors show that R-Loop formation increases following HIV infection between 6 hour post-infection and 12 hours post-infection, depending on the cell model. However, these figures lack a mock-infected control for each cell model to assess R-loop formation at the same time points. They would also benefit from a control showing that virus entry is necessary, such as omitting the VSV G protein donor.

Additionally, they use intracellular staining to confirm DRIPc-Seq results, by demonstrating an increase in R-loop formation at 6 hours post-infection in HeLa cells. It would have been more relevant to use primary T cells for this assay, but HeLa cells probably provided easier and clearer imaging.

(c) Figure 2: This figure shows that cells infected with HIV show more R-loops as well as longer sequences containing R-loop structures. Panel B shows that these R-loops were distributed throughout different genomic features, such as both genic and intergenic regions of the genome. However, the data are presented in such a way that it is impossible to determine the proportion of R-loops in each type of genomic feature. The reader has no way to tell, for example, the proportion of R-loops in genic vs intergenic DNA and how this value changes with time. Furthermore, increased R-loop formation due to HIV infection showed poor correlation with gene expression, suggesting that R-loops were not forming due to transcriptional activation, although the difference between 0 and the remaining time points is not apparent, nor is the meaning of the absurd p values.

(d) Figure 3: This figure shows the use of cell lines carrying R-loop inducible (mAIRN) or non-inducible (ECFP) genes to model the association of HIV integration with R-loop structures. The authors demonstrate the functional validation of R-loop induction in the cell line model. Additionally, when R-loops are induced there is a significant increase in HIV integration in the R-loop forming vector sequence when R-loops are induced with doxycycline. This result shows a correlation between expression and integration that is much stronger in the R-loop forming gene than in the unreferenced ECFP gene but does not prove that integration directly targets R-loops. It is possible, for example, that some features of the DNA sequence, such as base composition affect both integration and R-loop formation independently. As described more fully below, there is also a serious concern regarding the method used to quantify the integration frequencies.

(e) Figure 4: This figure shows evidence of increased HIV integration within regions of the genome containing R-loops with an additional preference for integration within the R-loop and a decrease in frequency of integration further from the R-loop. Identifying a preference for R-loops is very intriguing but the authors do also demonstrate that integration does occur when R-loops are not present. Also Panel A, which shows that regions of cell DNA that form R-loops have a higher frequency of Integration sites than those that do not, should also be controlled for the level of gene expression of the two types of region.

(f) Figure 5: In this figure, the authors demonstrate that HIV integrase binds to R-loops through a number of protein assays, but does not show that this binding is associated with enzymatic activity. ESMA of integrase identified increased binding to DNA-RNA over dsDNA. Additionally, precipitation of RNA-DNA hybrids pulled down HIV integrase. A proximity ligation assay detecting R-loops and HIV-integrase showed co-localization within the nucleus of HeLa cells. HeLa cells were probably used due to their efficiency of transduction but are not physiologically relevant cell types.

(g) Discussion: In the discussion, the authors address how their work relates to previous evidence of HIV integration by association of LEDGF/p75 and CPSF6. They also cite that LEDGF/p75 has possible R-loop binding capabilities. They also discuss what possible mechanisms are driving increases in R-loop formation during HIV infection, pointing to possible HIV accessory proteins. They also state that how HIV integrates in transcriptionally silent regions is still unknown but do point out that they were able to show R-loops appear in many different regions of the genome but did not show that R-loops in transcriptional inactive regions are integration targets. More seriously, they failed to make a connection between their work and the current understanding of the biochemical and structural mechanism of the integration reaction.

Reviewer #2 (Public Review):

Retroviral integration in general, and HIV integration in particular, takes place in dsDNA, not in R-loops. Although HIV integration can occur in vitro on naked dsDNA, there is good evidence that, in an infected cell, integration occurs on DNA that is associated with nucleosomes. This review will be presented in two parts. First, a summary will be provided giving some of the reasons to be confident that integration occurs on dsDNA on nucleosomes. The second part will point out some of the obvious problems with the experimental data that are presented in the manuscript.

(1) 2017 Dos Passos Science paper describes the structure of the HIV intasome. The structure makes it clear that the target for integration is dsDNA, not an R-loop, and there are very good reasons to think that structure is physiologically relevant. For example, there is data from the Cherepanov, Engelman, and Lyumkis labs to show that the HIV intasome is quite similar in its overall structure and organization to the structures of the intasomes of other retroviruses. Importantly, these structures explain the way integration creates a small duplication of the host sequences at the integration site. How do the authors propose that an R-loop can replace the dsDNA that was seen in these intasome structures?

(2) As noted above, concerted (two-ended) integration can occur in vitro on a naked dsDNA substrate. However, there is compelling evidence that, in cells, integration preferentially occurs on nucleosomes. Nucleosomes are not found in R loops. In an infected cell, the viral RNA genome of HIV is converted into DNA within the capsid/core which transits the nuclear pore before reverse transcription has been completed. Integration requires the uncoating of the capsid/core, which is linked to the completion of viral DNA synthesis in the nucleus. Two host factors are known to strongly influence integration site selection, CPSF6 and LEDGF. CPSF6 is involved in helping the capsid/core transit the nuclear pore and associate with nuclear speckles. LEDGF is involved in helping the preintegration complex (PIC) find an integration site after it has been released from the capsid/core, most commonly in the bodies of highly expressed genes. In the absence of an interaction of CPSF6 with the core, integration occurs primarily in the lamin-associated domains (LADs). Genes in LADs are usually not expressed or are expressed at low levels. Depending on the cell type, integration in the absence of CPSF6 can be less efficient than normal integration, but that could well be due to a lack of LEDGF (which is associated with expressed genes) in the LADs. In the absence of an interaction of IN with LEDGF (and in cells with low levels of HRP2) integration is less efficient and the obvious preference for integration in highly expressed genes is reduced. Importantly, LEDGF is known to bind histone marks, and will therefore be preferentially associated with nucleosomes, not R-loops. LEDGF fusions, in which the chromatin binding portion of the protein is replaced, can be used to redirect where HIV integrates, and that technique has been used to map the locations of proteins on chromatin. Importantly, LEDGF fusions in which the chromatin binding component of LEDGF is replaced with a module that recognizes specific histone marks direct integration to those marks, confirming integration occurs efficiently on nucleosomes in cells. It is worth noting that it is possible to redirect integration to portions of the host genome that are poorly expressed, which, when taken with the data on integration into LADs (integration in the absence of a CPSF6 interaction) shows that there are circumstances in which there is reasonably efficient integration of HIV DNA in portions of the genome in which there are few if any R-loops.

(3) Given that HIV DNA is known to preferentially integrate into expressed genes and that R-loops must necessarily involve expressed RNA, it is not surprising that there is a correlation between HIV integration and regions of the genome to which R loops have been mapped. However, it is important to remember that correlation does not necessarily imply causation.

If we consider some of the problems in the experiments that are described in the manuscript:

(1) In an infected individual, cells are almost always infected by a single virion and the infecting virion is not accompanied by large numbers of damaged or defective virions. This is a key consideration: the claim that infection by HIV affects R-loop formation in cells was done with a VSVg vector in experiments in which there appears to have been about 6000 virions per cell. Although most of the virions prepared in vitro are defective in some way, that does not mean that a large fraction of the defective virions cannot fuse with cells. In normal in vivo infections, HIV has evolved in ways that avoid signaling infected the cell of its presence. To cite an example, carrying out reverse transcription in the capsid/core prevents the host cell from detecting (free) viral DNA in the cytoplasm. The fact that the large effect on R-loop formation which the authors report still occurs in infections done in the absence of reverse transcription strengthens the probability that the effects are due to the massive amounts of virions present, and perhaps to the presence of VSVg, which is quite toxic. To have physiological relevance, the infections would need to be carried out with virions that contain HIV even under circumstances in which there is at most one virion per cell.

(2) Using the Sso7d version of HIV IN in the in vitro binding assays raises some questions, but that is not the real question/problem. The real problem is that the important question is not what/how HIV IN protein binds to, but where/how an intasome binds. An intasome is formed from a combination of IN bound to the ends of viral DNA. In the absence of viral DNA ends, IN does not have the same structure/organization as it has in an intasome. Moreover, HIV IN (even Sso7d, which was modified to improve its behavior) is notoriously sticky and hard to work with. If viral DNA had been included in the experiment, intasomes would need to be prepared and purified for a proper binding experiment. To make matters worse, there are multiple forms of multimeric HIV IN and it is not clear how many HIV INs are present in the PICs that actually carry out integration in an infected cell.

(3) As an extension of comment 2, the proper association of an HIV intasome/PIC with the host genome requires LEDGF and the appropriate nucleic acid targets need to be chromatinized.

(4) Expressing any form of IN, by itself, in cells to look for what IN associates with is not a valid experiment. A major factor that helps to determine both where integration takes place and the sites chosen for integration is the transport of the viral DNA and IN into the nucleus in the capsid core. However, even if we ignore that important part of the problem, the IN that the authors expressed in HeLa cells won't be bound to the viral DNA ends (see comment 2), even if the fusion protein would be able to form an intasome. As such, the IN that is expressed free in cells will not form a proper intasome/PIC and cannot be expected to bind where/how an intasome/PIC would bind.

(5) As in comment 1, for the PLA experiments presented in Figure 5 to work, the number of virions used per cell (which differs from the MOI measured by the number of cells that express a viral marker) must have a high, which is likely to have affected the cells and the results of the experiment. However, there is the additional question of whether the IN-GFP fusion is functional. The fact that the functional intasome is a complex multimer suggests that this could be a problem. There is an additional problem, even if IN-GFP is fully functional. During a normal infection, the capsid core will have delivered copies of IN (and, in the experiments reported here, the IN-GFP fusion) into the nucleus that is not part of the intasome. These "free" copies of IN (here IN-GFP) are not likely to go to the same sites as an intasome, making this experiment problematic (comment 4).

(6) In the Introduction, the authors state that the site of integration affects the probability that the resulting provirus will be expressed. Although this idea is widely believed in the field, the actual data supporting it are, at best, weak. See, for example, the data from the Bushman lab showing that the distribution of integration sites is the same in cells in which the integrated proviruses are, and are not, expressed. However, given what the authors claim in the introduction, they should be more careful in interpreting enzyme expression levels (luciferase) as a measure of integration efficiency in experiments in which they claim proviruses are integrated in different places.

(7) Using restriction enzymes to create an integration site library introduces biases that derive from the uneven distribution of the recognition sites for the restriction enzymes.

Reviewer #3 (Public Review):

In this manuscript, Park and colleagues describe a series of experiments that investigate the role of R-loops in HIV-1 genome integration. The authors show that during HIV-1 infection, R-loops levels on the host genome accumulate. Using a synthetic R-loop prone gene construct, they show that HIV-1 integration sites target sites with high R-loop levels. They further show that integration sites on the endogenous host genome are correlated with sites prone to R-loops. Using biochemical approaches, as well as in vivo co-IP and proximity ligation experiments, the authors show that HIV-1 integrase physically interacts with R-loop structures.

My primary concern with the paper is with the interpretations the authors make about their genome-wide analyses. I think that including some additional analyses of the genome-wide data, as well as some textual changes can help make these interpretations more congruent with what the data demonstrate. Here are a few specific comments and questions:

(1) I think Figure 1 makes a good case for the conclusion that R-loops are more easily detected HIV-1 infected cells by multiple approaches (all using the S9.6 antibody). The authors show that their signals are RNase H sensitive, which is a critical control. For the DRIPc-Seq, I think including an analysis of biological replicates would greatly strengthen the manuscript. The authors state in the methods that the DRIPc pulldown experiments were done in biological replicates for each condition. Are the increases in DRIPc peaks similar across biological replicates? Are genomic locations of HIV-1-dependent peaks similar across biological replicates? Measuring and reporting the biological variation between replicate experiments is crucial for making conclusions about increases in R-loop peak frequency. This is partially alleviated by the locus-specific data in Figure S3A. However, a better understanding of how the genome-wide data varies across biological replicates will greatly enhance the quality of Figure 1.

(2) I think that the conclusion that R-loops "accumulate" in infected cells is acceptable, given the data presented. However, in line 134 the authors state that "HIV-1 infection induced host genomic R-loop formation". I suggest being very specific about the observation. Accumulation can happen by (a) inducing a higher frequency of the occurrence of individual R-loops and/or (b) stabilizing existing R-loops. I'm not convinced the authors present enough evidence to claim one over the other. It is altogether possible that HIV-1 infection stabilizes R-loops such that they are more persistent (perhaps by interactions with integrase?), and therefore more easily detected. I think rephrasing the conclusions to include this possibility would alleviate my concerns.

(3) A technical problem with using the S9.6 antibody for the detection of R-loops via microscopy is that it cross-reacts with double-stranded RNA. This has been addressed by the work of Chedin and colleagues (as well as others). It is absolutely essential to treat these samples with an RNA:RNA hybrid-specific RNase, which the authors did not include, as far as their methods section states. Therefore, it is difficult to interpret all of the immunofluorescence experiments that depend on S9.6 binding.

(4) Given that there is no clear correlation between expression levels and R-loop peak detection, combined with the data that show increased detection of R-loop frequency in non-genic regions, I think it will be important to show that the R-loop forming regions are indeed transcribed above background levels. This will help alleviate possible concerns that there are technical errors in R-loop peak detection.

(5) In Figures 4C and D the hashed lines are not defined. It is also interesting that the integration sites do not line up with R-loop peaks. This does not necessarily directly refute the conclusions (especially given the scale of the genomic region displayed), but should be addressed in the manuscript. Additionally, it would greatly improve Figure 4 to have some idea about the biological variation across replicates of the data presented 4A.

(6) The authors do not adequately describe the Integrase mutant that they use in their biochemical experiments in Figure 5A. Could this impact the activity of the protein in such a way that interferes with the interpretation of the experiment? The mutant is not used in subsequent experiments for Figure 5 and so even though the data are consistent with each other (and the conclusion that Integrase interacts with R-loops) a more thorough explanation of why that mutant was used and how it impacts the biochemical activity of the protein will help the interpretation of the data presented in Figure 5.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation