Author response:
The following is the authors’ response to the original reviews.
eLife Assessment
This important work proposes a neural network model of interactions between the prefrontal cortex and basal ganglia to implement adaptive resource allocation in working memory, where the gating strategies for storage are adjusted by reinforcement learning. Numerical simulations provide convincing evidence for the superiority of the model in improving effective capacity, optimizing resource management, and reducing error rates, as well as solid evidence for its human-like performance. The paper could be strengthened further by a more thorough comparison of model predictions with human behavior and by improved clarity in presentation. This work will be of broad interest to computational and cognitive neuroscientists, and may also interest machine-learning researchers who seek to develop brain-inspired machine-learning algorithms for memory.
We thank the reviewers for their thorough and constructive comments, which have helped us clarify, augment and solidify our work. Regarding the suggestion to include a “more thorough comparison with with human behavior”, we believe this comment reflects one of the reviewer’s suggestion to compare with sequential order effects. We now include a new section with simulations showing that the network exhibits clear recency effects in accordance with the literature, and where such recency effects are known to be related to WM interference and not due to passive decay. Overall our work makes substantial contact with human behavioral patterns that have been documented in the human literature (and which as far as we know have not been jointly captured by any one model), such as the shape of the error distributions, including probability of recall and variable precision; attraction to recently presented items, sensitivity to reinforcement history, set-size dependent chunking, recency effects, dopamine manipulation effects, as well of a range of human data linking capacity limitations to frontostriatal function. It also provides a theoretical proposal for the well established phenomenon of capacity limitations in humans, suggesting that they arise due to difficulty in WM management.
Below we address each reviewer individually, responding to each comment and providing the relevant location in the paper that the changes and additions were made. Reviewer responses are included in blue/bold for clarity.
Public Reviews:
Reviewer 1:
Thank you for your comments. We appreciate your statements of the strengths of this paper and your suggestions to improve this paper.
First, the method section appears somewhat challenging to follow. To enhance clarity, it might be beneficial to include a figure illustrating the overall model architecture. This visual aid could provide readers with a clearer understanding of the overall network model.
Additionally, the structure depicted in Figure 2 could be potentially confusing. Notably, the absence of an arrow pointing from the thalamus to the PFC and the apparent presence of two separate pathways, one from sensory input to the PFC and another from sensory input to the BG and then to the thalamus, may lead to confusion. While I recognize that Figure 2 aims to explain network gating, there is room for improvement in presenting the content accurately.
As suggested, we added a figure (new figure 2) illustrating the overall model architecture before expanding it to show the chunking circuitry. This figure also shows the projections from thalamus to PFC (we preserve the previous figure 2, now figure 3, as an example sequence of network gating decisions, in more abstract form to help facilitate a functional understanding of the sequence of events without too much clutter). We also made several other general clarifications to the methods sections to make it more transparent and easier to follow, as per your suggestions.
Still, for the method part, it would enhance clarity to explicitly differentiate between predesigned (fixed) components and trainable components. Specifically, does the supplementary material state that synaptic connection weights in striatal units (Go&NoGo) are trained using XCAL, while other components, such as those in the PFC and lateral inhibition, are not trained (I found some sentences in 'Limitations and Future Directions')?
We have now explicitly specified learned and fixed components. We have further explained the role of XCAL and how striatal Go/NoGo weights are trained. We have also added clarification on how gating policies are learned via eligibility traces and synaptic tags.
I'm not sure about the training process shown in Figure 8. It appears that the training may not have been completed, given that the blue line representing the chunk stripe is still ascending at the endpoint. The weights depicted in panel d) seem to correspond with those shown in panels b) and c), no? Then, how is the optimization process determined to be finished? Alternatively, could it be stated that these weight differences approach a certain value asymptotically? It would be better to clarify the convergence criteria of the optimization process.
The training process has been clarified and we specify (in the last paragraph of the Base PBWM Model) how we determine when training is complete. We also can confirm that the network behavior has stabilized in learning even if the Go/NoGo weights continue to grow over time for the chunked layer (due to imperfect performance and reinforcement of the chunk gating strategy).
Reviewer 2:
Thank you for your comments. We appreciate your notes on the strengths of the paper and your suggestions to help improve the paper.
The model employs a spiking neural network, which is relatively complex. Additionally, while this paper validates the effectiveness of chunking strategies used by the brain to enhance working memory efficiency through computational simulations, further comparison with related phenomena observed in cognitive neuroscience experiments on limited working memory capacity, such as the recency effect, is necessary to verify its generalizability.
Thank you for proposing we add in more connections with human WM. Based on your specific recommendation, we have included the section “Network recapitulates human sequential effects in working memory.” where we discuss recency effects in human working memory and how our model recapitulates this effect. We have also made the connections to human data and human work more explicit throughout the manuscript (Figure 4c). As noted in response to the assessment, we believe our model does make contact with a wide variety of cognitive neuroscience data in human WM, such as the shape of the error distributions, including probability of recall and variable precision; attraction to recently presented items, sensitivity to
reinforcement history, set-size dependent chunking, recency effects, and dopamine manipulation effects, as well of a range of human data linking capacity limitations to frontostriatal function. It also provides a theoretical proposal for the well established phenomenon of capacity limitations in humans, suggesting that they arise due to difficulty in WM management.
Recommendations For The Authors:
Reviewer 1:
I appreciate the authors' clear discussion of the limitations of this work in the section "Limitations and Future Directions". The development of a comprehensive model framework to overcome these constraints should require a separate paper, though, I am curious if the authors have attempted any experiments, such as using two identically designed chunking layers, that could partially support the assumptions presented in the paper.
Expanding the number of chunking layers is a great future direction. We felt that it was most effective for this paper to begin with a minimal set up with proof of concept. We hypothesize that, given our results, a reinforcement learning algorithm would be able to learn to select the best level of abstraction (degree of chunking) in more continuous form, but would require more experience across a range of tasks to do so.
I'm not sure whether it's appropriate that "Frontostriatal Chunking Gating..." precedes "Dopamine Balance is...", maybe it would be better to reverse the order thus avoiding the need to mention the role of dopamine before delving into the details. Additionally, including a summary at the end of the Introduction, outlining how the paper is organized, could provide readers with a clear roadmap of the forthcoming content.
We appreciate this suggestion. After careful thought, we wanted to preserve the order because we felt it was important to make the direct connection between set size and stripe usage following the discussion on performance based on increasing stripes.
The authors could improve the overall polish of the paper. The equations in the Method section are somewhat confusing: Eq. (2) appears incorrect, as it lacks a weight w_i and n should presumably be in the denominator. For Eq. (3), the comma should be replaced with ']'... It would be advisable to cross-reference these equations with the original O'Reilly and Frank paper for consistency.
Thank you for pointing out the errors in the method equations- those equations were indeed rendering incorrectly. We have fixed this problem.
Additionally, there are frequent instances of missing figure and reference citations (many '?'s), and it would be beneficial to maintain consistent citation formatting throughout the paper: sometimes citations are presented as "key/query coding (Traylor, Merullo, Frank, and Pavlick, 2024; see also Swan and Wyble, 2014)", while other times they are written as "function (O'Reilly & Frank, 2006)"...
Lastly, there is an empty '3.1' section in the supplementary material that should be addressed.
The citation issues were fixed. The supplementary information was cleaned and the missing section was removed. Thank you for mentioning these errors.
Reviewer 2:
Thank you for the following recommendations and suggestions. We respond to each individual point based on the numbering system used in your review.
(1) This paper utilizes the experimental paradigm of visual working memory, in which different visual stimuli are sequentially loaded into the working memory system, and the accuracy of memory for these stimuli is calculated.
The authors could further plot the memory accuracy curve as the number of items (N) increases, under both chunking and non-chunking strategies. This would allow for the examination of whether memory accuracy suddenly declines at a specific value of N (denoted as Nc), thereby determining the limited capacity of working memory within this experimental framework, which is about 4 different items or chunks. Additionally, it could be investigated whether the value of Nc is larger when the chunking strategy is applied.
We have included an additional plot (Probability of Recall) as a supplemental figure to Figure 5 to explore the probability of recall as a function of set size for both chunking and no chunking models. This plot shows that the chunking model increases probability of recall when set size exceeds allocated capacity (but that nevertheless both models show decreases in recall with set size, consistent with the literature).
(2) The primacy effect or recency effect observed in the experiments and traditional working memory models, including the slot model and the limited resource model, should be examined to see if it also appears in this model.
The literature on human working memory shows a prevalent recency effect (but not a primacy effect, which is thought to be due to episodic memory, and which is not included in our model). We have added a section showing that our model demonstrates clear recency effects.
(3) The construction of the model and the single neuron dynamics involved need further refinement and optimization:
Model Description: The details of the model construction in the paper need to be further elaborated to help other researchers better understand and apply the model in reproducing or extending research. Specifically:
a) The construction details of different modules in the model (such as Input signal, BG, striatum, superficial PFC, deep PFC) and the projection relationships between different modules. Adding a diagram to illustrate the network construction would be beneficial.
To aid in the understanding of the model construction and model components, we have included an additional figure (Figure 1: Base Model) that explains the key layers and components of the model. We have also altered the overall model figures to show more clearly that the inputs project to both PFC and striatum, to highlight that information is temporarily represented in superficial PFC layers even before striatal gating, which is needed for storage after the input decays.
We have expanded the methods and equations and we also provide a link to the model github for purposes of reproducibility and sharing.
A base model figure was added to specify key connections.
a) The numbers of excitatory and inhibitory neurons within different modules and the connections between neurons.
We added clarification on the type of connections between layers (specifying which are fixed and learned). We have also added the size of layers in a new appendix section “Layer Sizes and Inner Mechanics”
b) The dynamics of neurons in different modules need to be elaborated, including the description of the dynamic equations of variables (such as x) involved in single neuron equations.
Single neuron dynamics are explained in equations 1-4. Equations 5-6 explain how activation travels between layers. The specific inhibitory dynamics in the chunking layer are elaborated in Figure 4. PBWM Model and Chunking Layer Details. The Appendix section “Neural model implementational details” states the key equations, neural information and connectivity. Since there is a large corpus of background information underlying these models, we have linked the Emergent github and specifically the Computational Cognitive Neuroscience textbook which has a detailed description of all equations. For the sake of paper length and understability, we chose the most relevant equations that distinguish our model.
c) The selection of parameters in the model, especially those that significantly affect the model's performance.
The appendix section hyperparameter search details some of the key parameters and why those values were chosen.
d) The model employs a sequential working memory paradigm, the forms of external stimuli involved in the encoding and recalling phases (including their mathematical expressions, durations, strengths, and other parameters) need to be elaborated further.
We appreciate this comment. We have expanded the Appendix section “Continuous Stimuli” to include the details of stimuli presentation (including durations etc).
(4) The figures in the paper need optimization. For example, the size of the schematic diagram in Figure 2 needs to be enlarged, while the size of text such as "present stimulus 1, 2, recall stimulus 1" needs to be reduced. Additionally, the citation of figures in the main text needs to be standardized. For example, Figure 1b, Figure 1c, etc., are not cited in the main text.
The task sequence figure (original Figure 2) has been modified and following your suggestions, text sizes have been modified.
(5) Section 3.1 in the appendix is missing.
Supplemental section 3.1 is removed.