The TTLL10 polyglycylase is stimulated by tubulin glutamylation and inhibited by polyglycylation

  1. Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
  2. Proteomics Core Facility, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
  3. Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, Bethesda, MD 20892, USA

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Kassandra Ori-McKenney
    University of California, Davis, United States of America
  • Senior Editor
    Volker Dötsch
    Goethe University, Frankfurt am Main, Germany

Reviewer #1 (Public Review):

Summary:

In their current study, Cummings et al have approached this fundamental biochemical problem using a combination of purified enzyme-substrate reactions, MS/MS, and microscopy in vitro to provide key insights into the hierarchy of generating polyglycylation in cilia and flagella. They first establish that TTLL8 is a monoglycylase, with the potential to add multiple mono glycine residues on both α- and β-tubulin. They then go on to establish that monoglycylation is essential for TTLL10 binding and catalytic activity, which progressively reduces as the level of polyglycylation increases. This provides an interesting mechanism of how the level of polyglycylation is regulated in the absence of a deglycylase. Finally, the authors also establish that for efficient TTLL10 activity, it is not just monoglycylation, but also polyglutamylation that is necessary, giving a key insight into how both these modifications interact with each other to ensure there is a balanced level of PTMs on the axonemes for efficient cilia function.

Strengths:

The manuscript is well-written, and experiments are succinctly planned and outlined. The experiments were used to provide the conclusions to what the authors were hypothesising and provide some new novel possible mechanistic insights into the whole process of regulation of tubulin glycylation in motile cilia.

Weaknesses:

The initial part of the manuscript where the authors discuss about the requirement of monoglycylation by TTLL8 is not new. This was established back in 2009 when Rogowski et al (2009) showed that polyglycylation of tubulin by TTLL10 occurs only when co-expressed in cells with TTLL3 or TTLL8. So, this part of the study adds very little new information to what was known.

The study also fails to discuss the involvement of the other monoglycylase, TTLL3 in the entire study, which is a weakness as in vivo, in cells, both the monoglycylases act in concert and so, may play a role in regulating the activity of TTLL10.

Reviewer #2 (Public Review):

In their manuscript, Cummings et al. focus on the enzymatic activities of TTLL3, TTLL8, and TTLL10, which catalyze the glycylation of tubulin, a crucial posttranslational modification for cilia maintenance and motility. The experiments are beautifully performed, with meticulous attention to detail and the inclusion of appropriate controls, ensuring the reliability of the findings. The authors utilized in vitro reconstitution to demonstrate that TTLL8 functions exclusively as a glycyl initiase, adding monoglycines at multiple positions on both α- and β-tubulin tails. In contrast, TTLL10 acts solely as a tubulin glycyl elongase, extending existing glycine chains. A notable finding is the differential substrate recognition between TTLL glycylases and TTLL glutamylases, highlighting a broader substrate promiscuity in glycylases compared to the more selective glutamylases. This observation aligns with the greater diversification observed among glutamylases. The study reveals a hierarchical mechanism of enzyme recruitment to microtubules, where TTLL10 binding necessitates prior monoglycylation by TTLL8. This binding is progressively inhibited by increasing polyglycine chain length, suggesting a self-regulatory mechanism for polyglycine chain length control. Furthermore, TTLL10 recruitment is enhanced by TTLL6-mediated polyglutamylation, illustrating a complex interplay between different tubulin modifications. In addition, they uncover that polyglutamylation stimulates TTLL10 recruitment without necessarily increasing glycylation on the same tubulin dimer, due to the potential for TTLLs to interact with neighboring tubulin dimers. This mechanism could lead to an enrichment of glycylation on the same microtubule, contributing to the complexity of the tubulin code. The article also addresses a significant challenge in the field: the difficulty of generating microtubules with controlled posttranslational modifications for in vitro studies. By identifying the specific modification sites and the interplay between TTLL activities, the authors provide a valuable tool for creating differentially glycylated microtubules. This advancement will facilitate further studies on the effects of glycylation on microtubule-associated proteins and the broader implications of the tubulin code. In summary, this study substantially contributes to our knowledge of posttranslational enzymes and their regulation, offering new insights into the biochemical mechanisms underlying microtubule modifications. The rigorous experimental approach and the novel findings presented make this a pivotal addition to the field of cellular and molecular biology.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation