Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.
Read more about eLife’s peer review process.Editors
- Reviewing EditorMurim ChoiSeoul National University, Seoul, Korea, the Republic of
- Senior EditorMurim ChoiSeoul National University, Seoul, Korea, the Republic of
Reviewer #1 (Public Review):
Most human traits and common diseases are polygenic, influenced by numerous genetic variants across the genome. These variants are typically non-coding and likely function through gene regulatory mechanisms. To identify their target genes, one strategy is to examine if these variants are also found among genetic variants with detectable effects on gene expression levels, known as eQTLs. Surprisingly, this strategy has had limited success, and most disease variants are not identified as eQTLs, a puzzling observation recently referred to as "missing regulation".
In this work, Jeong and Bulyk aimed to better understand the reasons behind the gap between disease-associated variants and eQTLs. They focused on immune-related diseases and used lymphoblastoid cell lines (LCLs) as a surrogate for the cell types mediating the genetic effects. Their main hypothesis is that some variants without eQTL evidence might be identifiable by studying other molecular intermediates along the path from genotype to phenotype. They specifically focused on variants that affect chromatin accessibility, known as caQTLs, as a potential marker of regulatory activity.
The authors present data analyses supporting this hypothesis: several disease-associated variants are explained by caQTLs but not eQTLs. They further show that although caQTLs and eQTLs likely have largely overlapping underlying genetic variants, some variants are discovered only through one of these mapping strategies. Notably, they demonstrate that eQTL mapping is underpowered for gene-distal variants with small effects on gene expression, whereas caQTL mapping is not dependent on the distance to genes. Additionally, for some disease variants with caQTLs but no corresponding eQTLs in LCLs, they identify eQTLs in other cell types.
Altogether, Jeong and Bulyk convincingly demonstrate that for immune-related diseases, discovering the missing disease-eQTLs requires both larger eQTL studies and a broader range of cell types in expression assays. It remains to be seen what fractions of the missing disease-eQTLs will be discovered with either strategy and whether these results can be extended to other diseases or traits.
It should be noted that the problem of "missing regulation" has been investigated and discussed in several recent papers, notably Umans et al., Trends in Genetics 2021; Connally et al., eLife 2022; Mostafavi et al., Nat. Genet. 2023. The results reported by Jeong and Bulyk are not unexpected in light of this previous work (all of which they cite), but they add valuable empirical evidence that mostly aligns with the model and discussions presented in Mostafavi et al.
Reviewer #2 (Public Review):
Summary:
eQTLs have emerged as a method for interpreting GWAS signals. However, some GWAS signals are difficult to explain with eQTLs. In this paper, the authors demonstrated that caQTLs can explain these signals. This suggests that for GWAS signals to actually lead to disease phenotypes, they must be accessible in the chromatin. This implies that for GWAS signals to translate into disease phenotypes, they need to be accessible within the chromatin.
However, fundamentally, caQTLs, like GWAS, have the limitation of not being able to determine which genes mediate the influence on disease phenotypes. This limitation is consistent with the constraints observed in this study.
(1) For reproducibility, details are necessary in the method section.
- Details about adding YRI samples in ATAC-seq: For example, how many samples are there, and what is used among public data? There is LCL-derived iPSC and differentiated iPSC (cardiomyocytes) data , not LCL itself. How does this differ from LCL, and what is the rationale for including this data despite the differences?
- caQTL is described as having better power than eQTL despite having fewer samples. How does the number of ATAC peaks used in caQTL compare to the number of gene expressions used in eQTL?
- Details about RNA expression data: In the method section, it states that raw data (ERP001942) was accessed, and in data availability, processed data (E-GEUV-1) was used. These need to be consistent.
How many samples were used (the text states 373, but how was it reduced from the original 465, and the total genotype is said to be 493 samples while ATAC has n=100; what are the 20 others?), and it mentions European samples, but does this exclude YRI?
(2) Experimental results determining which TFs might bind to the representative signals of caQTL are required.
(3) It is stated that caQTL is less tissue-specific compared to eQTL; would caQTL performed with ATAC-seq results from different cell types, yield similar results?