Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.
Read more about eLife’s peer review process.Editors
- Reviewing EditorMathieu WolffCNRS, University of Bordeaux, Bordeaux, France
- Senior EditorKate WassumUniversity of California, Los Angeles, Los Angeles, United States of America
Reviewer #1 (Public Review):
Summary:
This work aims to understand the role of thalamus POm in dorsal lateral striatum (DLS) projection in learning a sensorimotor associative task. The authors first confirm that POm forms "en passant" synapses with some of the DLS neuronal subtypes. They then perform a go/no-go associative task that consists of the mouse learning to discriminate between two different textures and to associate one of them with an action. During this task, they either record the activity of the POm to DLS axons using endoscopy or silence their activity. They report that POm axons in the DLS are activated around the sensory stimulus but that the activity is not modulated by the reward. Last, they showed that silencing the POm axons at the level of DLS slows down learning the task.
The authors show convincing evidence of projections from POm to DLS and that POm inputs to DLS code for whisking whatever the outcome of the task is. However, their results do not allow us to conclude if more neurons are recruited during the learning process or if the already activated fibres get activated more strongly. Last, because POm fibres in the DLS are also projecting to S1, silencing the POm fibres in the DLS could have affected inputs in S1 as well and therefore, the slowdown in acquiring the task is not necessarily specific to the POm to DLS pathway.
Strengths:
One of the main strengths of the paper is to go from slice electrophysiology to behaviour to get an in-depth characterization of one pathway. The authors did a comprehensive description of the POm projections to the DLS using transgenic mice to unambiguously identify the DLS neuronal population. They also used a carefully designed sensorimotor association task, and they exploited the results in depth.
It is a very nice effort to have measured the activity of the axons in the DLS not only after the mice have learned the task but throughout the learning process. It shows the progressive increase of activity of POm axons in the DLS, which could imply that there is a progressive strengthening of the pathway. The results show convincingly that POm axons in the DLS are not activated by the outcome of the task but by the whisker activity, and that this activity on average increases with learning.
Weaknesses:
One of the main targets of the striatum from thalamic input are the cholinergic neurons that weren't investigated here, is there information that could be provided?
It is interesting to know that the POm projects to all neuronal types in the DLS, but this information is not used further down the manuscript so the only take-home message of Figure 1 is that the axons that they image or silence in the DLS are indeed connected to DLS neurons and not just passing fibres. In this line, are these axons the same as the ones projecting to S1? If this is the case, why would we expect a different behaviour of the axon activity at the DLS level compared to S1?
The authors used endoscopy to measure the POm axons in the DLS activity, which makes it impossible to know if the progressive increase of POm response is due to an increase of activity from each individual neuron or if new neurons are progressively recruited in the process.
The picture presented in Figure 4 of the stimulation site is slightly concerning as there are hardly any fibres in neocortical layer 1 while there seems to be quite a lot of them in layer 4, suggesting that the animal here was injected in the VB. This is especially striking as the implantation and projection sites presented in Figures 1 and 2 are very clean and consistent with POm injection.
Reviewer #2 (Public Review):
Summary:
Yonk and colleagues show that the posterior medial thalamus (POm), which is interconnected with sensory and motor systems, projects directly to major categories of neurons in the striatum, including direct and indirect pathway MSNs, and PV interneurons. Activity in POm-striatal neurons during a sensory-based learning task indicates a relationship between reward expectation and arousal. Inhibition of these neurons slows reaction to stimuli and overall learning. This circuit is positioned to feed salient event activation to the striatum to set the stage for effective learning and action selection.
Strengths:
The results are well presented and offer interesting insight into an understudied thalamostriatal circuit. In general, this work is important as part of a general need for an increased understanding of thalamostriatal circuits in complex learning and action selection processes, which have generally received less attention than corticostriatal systems.
Weaknesses:
There could be a stronger connection between the connectivity part of the data - showing that POm neurons context D1, D2, and PV neurons in the striatum but with some different properties - and the functional side of the project. One wonders whether the POm neurons projecting to these subtypes or striatal neurons have unique signaling properties related to learning, or if there is a uniform, bulk signal sent to the striatum. This is not a weakness per se, as it's reasonable for these questions to be answered in future papers.
All the in vivo activity-related conclusions stem from data from just 5 mice, which is a relatively small sample set. Optogenetic groups are also on the small side.
Reviewer #3 (Public Review):
Yonk and colleagues investigate the role of the thalamostriatal pathway. Specifically, they studied the interaction of the posterior thalamic nucleus (PO) and the dorsolateral striatum in the mouse. First, they characterize connectivity by recording DLS neurons in in-vitro slices and optogenetically activating PO terminals. PO is observed to establish depressing synapses onto D1 and D2 spiny neurons as well as PV neurons. Second, the image PO axons are imaged by fiber photometry in mice trained to discriminate textures. Initially, no trial-locked activity is observed, but as the mice learn PO develops responses timed to the audio cue that marks the start of the trial and precedes touch. PO does appear to encode the tactile stimulus type or outcome. Optogenetic suppression of PO terminals in striatum slow task acquisition. The authors conclude that PO provides a "behaviorally relevant arousal-related signal" and that this signal "primes" striatal circuitry for sensory processing.
A great strength of this paper is its timeliness. Thalamostriatal processing has received almost no attention in the past, and the field has become very interested in the possible functions of PO. Additionally, the experiments exploit multiple cutting-edge techniques.
There seem to be some technical/analytical weaknesses. The in vitro experiments appear to have some contamination of nearby thalamic nuclei by the virus delivering the opsin, which could change the interpretation. Some of the statistical analyses of these data also appear inappropriate. The correlative analysis of Pom activity in vivo, licking, and pupil could be more convincingly done.
The bigger weakness is conceptual - why should striatal circuitry need "priming" by the thalamus in order to process sensory stimuli? Why would such circuitry even be necessary? Why is a sensory signal from the cortex insufficient? Why should the animal more slowly learn the task? How does this fit with existing ideas of striatal plasticity? It is unclear from the experiments that the thalamostriatal pathway exists for priming sensory processing. In fact, the optogenetic suppression of the thalamostriatal pathway seems to speak against that idea.