Interneuron FGF13 regulates seizure susceptibility via a sodium channel-independent mechanism

  1. Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY
  2. Department of Neurological Surgery and Brain and Mind Research Institute, Weill Cornell Medicine of Cornell University, New York Presbyterian Hospital, New York, NY
  3. Department of Pediatrics, Division of Pediatric Neurology, Weill Cornell Medicine, New York, NY; Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY

Peer review process

Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, public reviews, and a response from the authors (if available).

Read more about eLife’s peer review process.

Editors

  • Reviewing Editor
    Joseph Raimondo
    University of Cape Town, Cape Town, South Africa
  • Senior Editor
    John Huguenard
    Stanford University School of Medicine, Stanford, United States of America

Reviewer #1 (Public Review):

Summary:

A subset of fibroblast growth factor (FGF) proteins (FGF11-FGF14; often referred to as fibroblast growth factor homologous factors because they are not thought to be secreted and do not seem to act as growth factors) have been implicated in modulating neuronal excitability, however, the exact mechanisms are unclear. In part, this is because it is unclear how different FGF isoforms alter ion channel activity in different neuronal populations. In this study, the authors explore the role of FGF 13 in epilepsy using a variety of FGF13 knock-out mouse models, including several targeted cell-type specific conditional knockout mouse lines. The study is intriguing as it indicates that FGF13 plays an especially important role in inhibitory neurons. Furthermore, although FGF13 has been studied as a regulator of neuronal voltage-gated sodium channels, the authors present data indicating that FGF13 knockout in inhibitory neurons induces seizures not by altering sodium current properties but by reducing voltage-gated potassium currents in inhibitory neurons. While intriguing, the data are incomplete in several aspects and thus the mechanisms by which various FGF13 variants induce Developmental and Epileptic Encephalopathies are not resolved by the data presented.

Strengths:

A major strength is the array of techniques used to assess the mice and the electrical activity of the neurons.

The multiple mouse knock-out models utilized are a strength, clearly demonstrating that FGF13 expression in inhibitory neurons, and possibly specific sub-populations of inhibitory neurons, is critically important.

The data on the increased sensitivity to febrile seizures in KO mice are very nice, provide clear evidence for regulation of excitability in inhibitory neurons by FGF13.

The Gad2Fgf13-KO mice indicated that several Fgf13 splice variants may be expressed in inhibitory neurons and suggest that the Fgf13-VY splice variants may have previously unrecognized specific roles in regulating neuronal excitability.

The data on males and females from the various KO mice lines indicates a clear gene dosage effect for this X-linked gene.

The unbiased metabolomic analysis supports the assertion that Fgf13 expression in inhibitory neurons is important in regulating seizure susceptibility.

Weaknesses:

The knockout approach can be powerful but also has distinct limitations. Multiple missense mutations in FGF13-S have been identified. The knockout models employed here are not appropriate for understanding how these missense variants lead to altered neuronal excitability. While the data show that complete loss of Fgf13 from excitatory forebrain neurons is not sufficient to induce seizure susceptibility, it does not rule out that specific variants (e.g., R11C) might alter the excitability of forebrain neurons. The missense variants may alter excitatory and/or inhibitory neuron excitability in distinct ways from a full FGF13 knockout.

The electrophysiological experiments are intriguing but not comprehensive enough to support all of the conclusions regarding how FGF13 modulates neuronal excitability.

Another concern is the use of different ages of neurons for different experiments. For example, sodium currents in Figures 2 and 5 (and Supplemental Figures 2 and 7) are recorded from cultured neurons, which may have very different properties (including changes in sodium channel complexes) from neurons in vivo that drive the development of seizure activity.

Reviewer #2 (Public Review):

Summary:

The authors address three primary questions:

(1) how FGF13 variants confer seizure susceptibility,
(2) the specific cell types involved, and
(3) the underlying mechanisms, particularly regarding Nav dysfunction.

They use different Cre drivers to generate cell type-specific knockouts (KOs). First, using Nestin-Cre to create a whole-brain Fgf13 KO, they observed spontaneous seizures and premature death. While KO of Fgf13 in excitatory neurons does not lead to spontaneous seizures, KO in inhibitory neurons recapitulates the seizures and premature death observed in the Nestin-Cre KO. They further narrow down the critical cell type to MGE-derived interneurons (INs), demonstrating that MGE-neuron-specific KO partially reproduces the observed phenotypes. "All interneuron" KOs exhibit deficits in synaptic transmission and interneuron excitability, not seen in excitatory neuron-specific KOs. Finally, they rescue the defects in the interneuron-specific KO by expressing specific Fgf13 isoforms. This is an elegant and important study adding to our knowledge of mechanisms that contribute to seizures.

Strengths

• The study provides much-needed cell type-specific KO models.
• The authors use appropriate Cre lines and characterize the phenotypes of the different KOs.
• The metabolomic analysis complements the rest of the data effectively.
• The study confirms and extends previous research using improved approaches (KO lines vs. in vitro KD or antibody infusion).
• The methods and analyses are robust and well-executed.

Weaknesses

• One weakness lies in the use of the Nkx2.1 line (instead of Nkx2.1CreER) in the paper. As a result, some answers to key questions are incomplete. For instance, it remains unclear whether the observed effects are due to Chandelier cells or NGFCs, potentially both MGE and CGE derived, explaining why Nkx2.1 alone does not fully replicate the overall inhibitory KO. Using Nkx2.1CreER could have helped address the cell specificity. With the Nkx2.1 line used in the paper, the answer is partial.

• While the mechanism behind the reduced inhibitory drive in the IN-specific KO is suggested to be presynaptic, the chosen method does not allow them to exactly identify the mechanisms (spontaneous vs mEPSC/mIPSC), and whether it is a loss of inhibitory synapses (potentially axo-axonic) or release probability.

• Some supporting data (e.g. Supplemental Figure 7 and 8) appear to come from only one (or two) WT and one (or two) KO mice. Supplementary data, like main data, should come from at least three mice in total to be considered complete/solid (even if the statistical analysis is done with cells).

General Assessment

The general conclusions of this paper are supported by data. As it is, the claim that "these results enhance our understanding of the molecular mechanisms that drive the pathogenesis of Fgf13-related seizures" is partially supported. A more cautious term may be more appropriate, as the study shows the mechanism is not Nav-mediated and suggests alternative mechanisms without unambiguously identifying them. The conclusion that the findings "expand our understanding of FGF13 functions in different neuron subsets" is supported, although somewhat overstated, as the work is not conclusive about the exact neuron subtypes. However, it does indeed show differential functions for specific neuronal classes, which is a significant result.

Impact and Utility

This paper is undoubtedly valuable. Understanding that excitatory neurons are not the primary contributors to the observed phenotypes is crucial. The finding that the effects are not MGE-unique is also important. This work provides a solid foundation for further research and will be a useful resource for future studies.

Reviewer #3 (Public Review):

Summary:

The authors aimed to determine the mechanism by which seizures emerge in Developmental and Epileptic Encephalopathies caused by variants in the gene FGF13. Loss of FGF13 in excitatory neurons had no effect on seizure phenotype as compared to the loss of FGF13 in GABAergic interneurons, which in contrast caused a dramatic proseizure phenotype and early death in these animals. They were able to show that Fgf13 ablation and consequent loss of FGF13-S and FGF13-VY reduced overall inhibitory input from Fgf13-expressing interneurons onto hippocampal pyramidal neurons. This was shown to occur not via disruption to voltage-gated sodium channels but rather by reducing potassium currents and action potential repolarisation in these interneurons.

Strengths:

The authors employed multiple well-validated, novel mouse lines with FGF13 knocked out in specific cell types including all neurons, all excitatory cells, all GABAergic interneurons, or a subset of MGE-derived interneurons, including axo-axonic chandelier cells. The phenotypes of each of these four mouse lines were carefully characterised to reveal clear differences with the most fundamental being that Interneuron-targeted deletion of FGF13 led to perinatal mortality associated with extensive seizures and impaired the hippocampal inhibitory/excitatory balance while deletion of FGF13 in excitatory neurons caused no detectable seizures and no survival deficits.

The authors made excellent use of western blotting and in situ hybridisation of the different FGF13 isoforms to determine which isoforms are expressed in which cell types, with FGF3-S predominantly in excitatory neurons and FGF13-VY and FGF13-V predominantly in GABAergic neurons.

The authors performed a highly detailed electrophysiological analysis of excitatory neurons and GABAergic interneurons with FGF13 deficits using whole-cell patch clamp. This enabled them to show that FGF13 removal did not affect voltage-gated sodium channels in interneurons, but rather reduced the action of potassium channels, with the resultant effect of making it more likely that interneurons enter depolarisation block. These findings were strengthened by the demonstration that viral re-expression of different Fgf13 splice isoforms could partially rescue deficits in interneuron action potential output and restore K+ channel current size.

Additionally, the discussion was nuanced and demonstrated how the current findings resolved previous apparent contradictions in the field involving the function of FGF13.

These findings will have a significant impact on our understanding of how FGF13 causes seizures and death in DEEs, and the action of different FGF13 isoforms within different neuronal cell types, particularly GABAergic interneurons.

  1. Howard Hughes Medical Institute
  2. Wellcome Trust
  3. Max-Planck-Gesellschaft
  4. Knut and Alice Wallenberg Foundation