Peer review process
Not revised: This Reviewed Preprint includes the authors’ original preprint (without revision), an eLife assessment, and public reviews.
Read more about eLife’s peer review process.Editors
- Reviewing EditorJeffrey SmithNational Institute of Neurological Disorders and Stroke, Bethesda, United States of America
- Senior EditorPanayiota PoiraziFORTH Institute of Molecular Biology and Biotechnology, Heraklion, Greece
Reviewer #1 (Public Review):
Summary:
It is suggested that for each limb the RG (rhythm generator) can operate in three different regimes: a non-oscillating state-machine regime, and in a flexordriven and a classical half-center oscillatory regime. This means that the field can move away from the old concept that there is only room for the classic half-center organization
Strengths:
A major benefit of the present paper is that a bridge was made between various CPG concepts ( "a potential contradiction between the classical half-center and flexor-driven concepts of spinal RG operation"). Another important step forward is the proposal about the neural control of slow gait ("at slow speeds ({less than or equal to} 0.35 m/s), the spinal network operates in a state regime and requires external inputs for phase transitions, which can come from limb sensory feedback and/or volitional inputs (e.g. from the motor cortex").
Weaknesses:
Some references are missing.
Reviewer #2 (Public Review):
Summary:
The biologically realistic model of the locomotor circuits developed by this group continues to define the state of the art for understanding spinal genesis of locomotion. Here the authors have achieved a new level of analysis of this model to generate surprising and potentially transformative new insights. They show that these circuits can operate in three very distinct states and that, in the intact cord, these states come into successive operation as the speed of locomotion increases. Equally important, they show that in spinal injury the model is "stuck" in the low speed "state machine" behavior.
Strengths:
There are many strengths for the simulation results presented here. The model itself has been closely tuned to match a huge range of experimental data and this has a high degree of plausibility. The novel insight presented here, with the three different states, constitutes a truly major advance in the understanding of neural genesis of locomotion in spinal circuits. The authors systematically consider how the states of the model relate to presently available data from animal studies. Equally important, they provide a number of intriguing and testable predictions. It is likely that these insights are the most important achieved in the past 10 years. It is highly likely proposed multi-state behavior will have a transformative effect on this field.
Weaknesses:
I have no major weaknesses. A moderate concern is that the authors should consider some basic sensitivity analyses to determine if the 3 state behavior is especially sensitive to any of the major circuit parameters - e.g. connection strengths in the oscillators or?
Reviewer #3 (Public Review):
Summary:
This work probes the control of walking in cats at different speeds and different states (split-belt and regular treadmill walking). Since the time of Sherrington there has been ongoing debate on this issue. The authors provide modeling data showing that they could reproduce data from cats walking on a specialized treadmill allowing for regular and split-belt walking. The data suggest that a non-oscillating state-machine regime best explains slow walking - where phase transitions are handled by external inputs into the spinal network. They then show at higher speeds a flexor-driven and then a classical half-center regime dominates. In spinal animals, it appears that a non-oscillating state-machine regime best explains the experimental data. The model is adapted from their previous work, and raises interesting questions regarding the operation of spinal networks, that, at low speeds, challenge assumptions regarding central pattern generator function. This is an interesting study. I have a few issues with the general validity of the treadmill data at low speeds, which I suspect can be clarified by the authors.
Strengths:
The study has several strengths. Firstly the detailed model has been well established by the authors and provides details that relate to experimental data such as commissural interneurons (V0c and V0d), along with V3 and V2a interneuron data. Sensory input along with descending drive is also modelled and moreover the model reproduces many experimental data findings. Moreover, the idea that sensory feedback is more crucial at lower speeds, also is confirmed by presynaptic inhibition increasing with descending drive. The inclusion of experimental data from split-belt treadmills, and the ability of the model to reproduce findings here is a definite plus.
Weaknesses:
Conceptually, this is a very useful study which provides interesting modeling data regarding the idea that the network can operate in different regimes, especially at lower speeds. The modelling data speaks for itself, but on the other hand, sensory feedback also provides generalized excitation of neurons which in turn project to the CPG. That is they are not considered part of the CPG proper. In these scenarios, it is possible that an appropriate excitatory drive could be provided to the network itself to move it beyond the state-machine state - into an oscillatory state. Did the authors consider that possibility? This is important since work using L-DOPA, for example, in cats or pharmacological activation of isolated spinal cord circuits, shows the CPG capable of producing locomotion without sensory or descending input.